

Contents

1	INTRODUCTION, MATERIALS, AND PROPERTIES	1			
1.1	Reinforced Concrete Structures	1.2 Historical Background	1.3 Concrete	1.4 Cement	1.5 Aggregates
1.6	Admixtures	1.7 Compressive Strength	1.8 Tensile Strength	1.9 Modulus of Elasticity	1.10 Creep and Shrinkage
1.11	Concrete Quality Control	1.12 Steel Reinforcement	1.13 SI Units	Selected References	
2	DESIGN METHODS AND REQUIREMENTS	31			
2.1	ACI Building Code	2.2 Strength Design and Working Stress Design Methods	2.3 Working Stress Method		
2.4	Strength Design Method	2.5 Comments on Design Methods	2.6 Safety Provisions	2.7 Overload Provisions for Various Load Combinations	
2.8	Handbooks and Computer Software	2.9 Dimensions and Tolerances			
2.10	Accuracy of Computations	Selected References			
3	STRENGTH OF RECTANGULAR SECTIONS IN BENDING	43			
3.1	General Introduction	3.2 Basis of Nominal Flexural Strength	3.3 Whitney Rectangular Stress Distribution		
3.4	Investigation of Rectangular Sections in Bending with Tension Reinforcement Only	3.5 Definition of Balanced Strain Condition	3.6 Maximum Reinforcement Ratio ρ	3.7 Minimum Reinforcement Ratio ρ	3.8 Design of Rectangular Sections in Bending with Tension Reinforcement Only
3.9	Practical Selection for Beam Sizes, Bar Sizes, and Bar Placement	3.10 Investigation of Rectangular Sections in Bending with Both Tension and Compression Reinforcement			
3.11	Criterion for the Compression Steel Yield Condition	3.12 Design of Rectangular Sections in Bending with Both Tension and Compression Reinforcement	3.13 Non-Rectangular Beams	Selected References	Problems
4	RECTANGULAR SECTIONS IN BENDING UNDER SERVICE LOAD CONDITIONS	99			
4.1	General Introduction	4.2 Fundamental Assumptions	4.3 Modulus of Elasticity Ratio n	4.4 Equilibrium Conditions	4.5 Method of Transformed Section
4.6	Investigation of Rectangular Sections in Bending with Tension Reinforcement Only	4.7 Design of Rectangular Sections in Bending with Tension Reinforcement Only	4.8 Design of Rectangular Sections in Bending with Both Tension and Compression Reinforcement	4.9 Investigation of Rectangular Sections in Bending with Both Tension and Compression Reinforcement	4.10 Serviceability—Deflections
4.11	Serviceability—Flexural Crack Control for Beams and One-Way Slabs	4.12 Serviceability—Side Face Crack Control for Large Beams	Selected References	Problems	
5	SHEAR STRENGTH AND SHEAR REINFORCEMENT	136			
5.1	Introduction	5.2 The Shear Stress Formula Based on Linear Stress Distribution	5.3 The Combined Stress Formula	5.4 Behavior of Beams Without Shear Reinforcement	5.5 Shear Strength of Beams Without Shear Reinforcement—ACI Code
5.6	Function of Shear Reinforcement	5.7 Truss Model for Reinforced Concrete Beam	5.8 Shear Strength of Beams with Shear Reinforcement—ACI Code	5.9 Lower and Upper Limits for Amount of Shear	

Reinforcement **5.10** Critical Section for Nominal Shear Strength Calculation **5.11** ACI Code Provisions for Shear Strength of Beams **5.12** Working Stress Method—ACI Code, Appendix A **5.13** Shear Strength of Beams—Design Examples **5.14** Shear Strength of Members Under Combined Bending and Axial Load **5.15** Deep Beams **5.16** Shear-Friction **5.17** Brackets and Corbels Selected References Problems

6 DEVELOPMENT OF REINFORCEMENT 223

6.1 General **6.2** Development Length **6.3** Flexural Bond **6.4** Failure Modes from Inadequate Development of Reinforcement **6.5** Reasons for Not Using Localized Surface Stress in Strength Design **6.6** Moment Capacity Diagram—Bar Bends and Cutoffs **6.7** Development Length for Tension Reinforcement—ACI Code **6.8** Second-Level Modifications to First-Level Development Length **6.9** Development Length for Compression Reinforcement **6.10** Development Length for Bundled Bars **6.11** Development Length for a Tension Bar Terminating in a Standard Hook **6.12** Bar Cutoffs in Negative Moment Region of Continuous Beams **6.13** Bar Cutoffs in Positive Moment Region of Continuous Beams **6.14** Bar Cutoffs in Uniformly Loaded Cantilever Beams **6.15** Development of Reinforcement at Simple Supports and at Points of Inflection **6.16** Development of Shear Reinforcement **6.17** Tension Lap Splices **6.18** Welded Tension Splices and Mechanical Connections **6.19** Compression Lap Splices **6.20** Compression End Bearing Connections, Welded Splices, and Mechanical Connections **6.21** Splices for Members Under Compression and Bending **6.22** Design Examples Selected References Problems

7 CONTINUITY IN BUILDING FRAMES OF REINFORCED CONCRETE 291

7.1 Common Building Frames **7.2** Positions of Live Load for Moment Envelope **7.3** Method of Analysis **7.4** ACI Moment Coefficients **7.5** ACI Moment Diagrams **7.6** Shear Envelope for Design Selected References Problems

8 DESIGN OF ONE-WAY SLABS 311

8.1 Definition **8.2** Design Methods **8.3** Thickness of Slab **8.4** Choice of Reinforcement **8.5** Continuity Analysis **8.6** Shrinkage and Temperature Reinforcement **8.7** Bar Details Selected References Problems

9 T-SECTIONS IN BENDING 327

9.1 General **9.2** Comparison of Rectangular and T-Sections **9.3** Effective Flange Width **9.4** Investigation of T-Sections in Bending—Strength Method **9.5** Maximum Tension Reinforcement Permitted in T-Sections **9.6** Design of T-Sections in Bending—Strength Method **9.7** Investigation of T-Sections in Bending—Working Stress Method Selected References Problems

10 CONTINUOUS SLAB-BEAM-GIRDER AND CONCRETE JOIST FLOOR SYSTEMS 344

10.1 Introduction **10.2** Size of Beam Web **10.3** Continuous Frame Analysis for Beams **10.4** Choice of Longitudinal Reinforcement in Beams **10.5** Shear Reinforcement in Beams **10.6** Details of Bars in Beams **10.7** Size of Girder Web **10.8** Continuous Frame Analysis for Girders **10.9** Choice of Longitudinal Reinforcement in Girders **10.10** One-Way Joist Floor Construction **10.11** Design of Concrete Joist Floors **10.12** Redistribution of Moments—Introduction to Limit Analysis Selected References Problems

11 MONOLITHIC BEAM-TO-COLUMN JOINTS 401

11.1 Monolithic Joints **11.2** Forces Acting on a Joint **11.3** Compression Through a Joint **11.4** Shear Through a Joint **11.5** Design Examples Selected References Problems

12 CANTILEVER RETAINING WALLS 418

12.1 Types of Retaining Structures **12.2** Forces on Retaining Walls **12.3** Stability Requirements **12.4** Preliminary Proportioning of Cantilever Walls **12.5** Design Example—Cantilever Retaining Wall Selected References Problems

13 MEMBERS IN COMPRESSION AND BENDING 447

- 13.1** Introduction **13.2** Types of Columns **13.3** Behavior of Axially Loaded Columns **13.4** Safety Provisions
13.5 Concentrically Loaded Short Columns **13.6** Strength Interaction Diagram **13.7** Length Effects **13.8** Lateral Ties **13.9** Spiral Reinforcement and Longitudinal Bar Placement **13.10** Limits on Percentage of Reinforcement
13.11 Maximum Strength in Axial Compression—ACI Code **13.12** Balanced Strain Condition—Rectangular Sections
13.13 Investigation of Strength in Compression Controls Region—Rectangular Sections **13.14** Investigation of Strength in Tension Controls Region—Rectangular Sections **13.15** Design for Strength—Region I, Minimum Eccentricity
13.16 Design for Strength—Region II, Compression Controls ($e_{min} < e < e_b$) **13.17** Design for Strength—Region III, Tension Controls ($e > e_b$) **13.18** Circular Sections as Compression Members with Bending **13.19** Axial Tension and Bending Moment **13.20** Working Stress Method **13.21** Biaxial Bending and Compression
Selected References
Problems

14 DEFLECTIONS 541

- 14.1** Deflections—General **14.2** Deflections for Elastic Sections **14.3** Modulus of Elasticity **14.4** Moment of Inertia
14.5 Instantaneous Deflections in Design **14.6** Creep Effect on Deflections under Sustained Load **14.7** Shrinkage Effect on Deflections under Sustained Load **14.8** Creep and Shrinkage Deflection—ACI Code Method **14.9** Creep and Shrinkage Deflection—Alternate Procedures **14.10** ACI Minimum Depth of Flexural Members **14.11** Span-to-Depth Ratio to Account for Cracking and Sustained Load Effects **14.12** ACI Code Deflection Provisions—Beam Examples
Selected References
Problems

15 LENGTH EFFECTS ON COLUMNS 593

- 15.1** General **15.2** Buckling of Concentrically Loaded Columns **15.3** Equivalent Pin-End Lengths **15.4** Moment Magnification—Simplified Treatment for Members in Single Curvature Without End Translation (i.e., No Sidesway)
15.5 Moment Magnification—Members Subject to End Moments Only; No Joint Translation **15.6** Members With Sidesway Possible—Unbraced Frames **15.7** Interaction Diagrams—Effect of Slenderness **15.8** ACI Code—General Analysis Method **15.9** ACI Code—Moment Magnifier Method for Braced Frames **15.10** ACI Code—Moment Magnifier Method for Unbraced Frames **15.11** Alignment Charts for Effective Length Factor k **15.12** MacGregor-Hage Moment Magnifier Method **15.13** MacGregor-Hage Amplified Lateral Load Method **15.14** Furlong's Rational Method for Unbraced Frames **15.15** Minimum Eccentricity in Design **15.16** Biaxial Bending and Axial Compression
15.17 ACI Code—Slenderness Ratio Limitations **15.18** Restraining Effect of Beams **15.19** Examples
Selected References
Problems

16 DESIGN OF TWO-WAY FLOOR SYSTEMS 661

- 16.1** General Description **16.2** General Design Concept of ACI Code **16.3** Total Factored Static Moment
16.4 Ratio of Flexural Stiffnesses of Longitudinal Beam to Slab **16.5** Minimum Slab Thickness for Deflection Control
16.6 Nominal Requirements for Slab Thickness and Size of Edge Beams, Column Capital, and Drop Panel
16.7 Limitations of Direct Design Method **16.8** Direct Design Method—Longitudinal Distribution of Moments
16.9 Direct Design Method—Effect of Pattern Loadings on Positive Moment **16.10** Direct Design Method—Procedure for Computation of Longitudinal Moments **16.11** Torsion Constant C of the Transverse Beam **16.12** Transverse Distribution of Longitudinal Moment **16.13** Design of Slab Thickness and Reinforcement **16.14** Beam (If Used) Size Requirement in Flexure and Shear **16.15** Shear Strength in Two-Way Floor Systems **16.16** Shear Reinforcement in Flat Plate Floors **16.17** Direct Design Method—Moments in Columns **16.18** Transfer of Moment and Shear at Junction of Slab and Column **16.19** Openings and Corner Connections in Flat Slabs **16.20** Equivalent Frame Method for Gravity and Lateral Load Analysis
Selected References
Problems

17 EQUIVALENT FRAME ANALYSIS OF TWO-WAY FLOOR SYSTEMS IN UNBRACED FRAMES 772

- 17.1** General Introduction **17.2** Analytical Models for Elastic Frame Analysis **17.3** Treatment of Model 1 as a Plane Frame **17.4** Reduced Stiffness Matrix and Reduced Fixed-End Moments for a Flexural Element with Rotational Springs

at Ends **17.5** The ACI Equivalent Column **17.6** Equivalent Column Method (Model 1A) vs Equivalent Beam Method (Model 1B) **17.7** Treatment of Model 1 as a Space Frame **17.8** Model 2 with Torsion Element Connecting Column Strip to Middle Strip **17.9** Concluding Remarks Selected References

18 YIELD LINE THEORY OF SLABS 797

18.1 Introduction **18.2** General Concept **18.3** Fundamental Assumptions **18.4** Methods of Analysis **18.5** Yield Line Analysis of One-Way Slabs **18.6** Work Done by Yield Line Moments in Rigid Body Rotation of Slab Segment **18.7** Nodal Force at Intersection of Yield Line with Free Edge **18.8** Nodal Forces at Intersection of Three Yield Lines **18.9** Yield Line Analysis of Rectangular Two-Way Slabs **18.10** Corner Effects in Rectangular Slabs **18.11** Application of Yield Line Analysis to Special Cases Selected References Problems

19 TORSION 829

19.1 General **19.2** Torsional Stress in Homogeneous Sections **19.3** Torsional Stiffness of Homogeneous Sections **19.4** Effects of Torsional Stiffness on Compatibility Torsion **19.5** Cracking Strength of Plain Concrete Rectangular Sections in Torsion—Skew Bending Theory **19.6** Strength of Reinforced Concrete Rectangular Sections in Torsion—Skew Bending Theory **19.7** Strength of Reinforced Concrete Rectangular Sections in Torsion—Space Truss Analogy **19.8** Strength of Sections in Combined Bending and Torsion **19.9** Strength of Sections in Combined Shear and Torsion **19.10** Strength Interaction Surface for Combined Bending, Shear, and Torsion **19.11** Torsional Strength of Concrete and Hoop Reinforcement—ACI Code **19.12** Provisions for Combined Torsion with Shear or Bending—ACI Code **19.13** Minimum Requirements for Torsional Reinforcement—ACI Code **19.14** Examples Selected References Problems

20 FOOTINGS 886

20.1 Purpose of Footings **20.2** Bearing Capacity of Soil **20.3** Types of Footings **20.4** Types of Failure of Footings **20.5** Shear Strength of Footings **20.6** Moment Strength of Footings and Development of Reinforcement **20.7** Proportioning Footing Areas for Equal Settlement **20.8** Investigation of Square Spread Footings **20.9** Design of Square Spread Footings **20.10** Design of Rectangular Footings **20.11** Design of Plain and Reinforced Concrete Wall Footings **20.12** Combined Footings **20.13** Design of Combined Footings **20.14** Pile Footings Selected References Problems

21 INTRODUCTION TO PRESTRESSED CONCRETE 935

21.1 Prestress **21.2** Historical Background **21.3** Advantages and Disadvantages of Prestressed Concrete Construction **21.4** Pretensioned and Posttensioned Beam Behavior **21.5** Service Load Stresses on Flexural Members—Tendons Having Varying Amounts of Eccentricity **21.6** Three Basic Concepts of Prestressed Concrete **21.7** Loss of Prestress **21.8** Strength of Flexural Members—ACI Code **21.9** Cracking Moment **21.10** Shear Strength of Members Without Shear Reinforcement **21.11** Shear Reinforcement for Prestressed Concrete Beams **21.12** Development of Reinforcement **21.13** Proportioning of Cross Sections for Flexure When No Tension Is Permitted **21.14** Additional Topics Selected References Problems

22 COMPOSITE CONSTRUCTION 994

22.1 Introduction **22.2** Composite Action **22.3** Advantages and Disadvantages of Composite Construction **22.4** Effective Slab Width **22.5** Computation of Section Properties **22.6** Working Stresses With and Without Shoring **22.7** Strength of Composite Sections **22.8** Shear Connection **22.9** Deflections **22.10** Slab on Precast Reinforced Concrete Beam—Strength Design **22.11** Slab on Steel Beam **22.12** Composite Columns Selected References Problems