

Contents

1. Introduction	1
1.1 Items Covered	2
1.2 Items not Covered	2
1.3 Applications of Viscoelastic Materials	2
1.4 Layout of Booklet	3
2. Fundamentals of Viscoelasticity	5
2.1 Linear Viscoelasticity	5
2.2 Definitions of Stress Relaxation Modulus and Creep Compliance Function	6
2.3 Definitions of Complex Modulus and Complex Compliance	8
2.4 Constitutive Equations of Viscoelasticity	11
2.4.1 Integral Formulation of the Constitutive Equations	11
2.4.2 Differential Formulation of Constitutive Equations Based on Mechanical Models	13
2.4.3 Generalised Differential Formulation of the Constitutive Equations	16
2.4.4 Fractional Calculus Formulation of the Constitutive Equations	17
2.4.5 Formal Relation Between Relaxation and Complex Moduli	18
2.5 Generalised Hooke's Law and Interconversion of Properties	22
2.6 Hyperelastic Behaviour of Elastomers/Rubbers	23
2.6.1 Modelling the Behaviour of Solid Elastomers/Rubbers	23
2.6.2 Modelling Compressibility Effects on Behaviour of Elastomers	25
2.6.3 Modelling the Behaviour of Elastomeric Foams	26
2.7 Effects of Temperature and Frequency	26
3. Characterisation of Static and Dynamic Properties of Viscoelastic Materials	29
3.1 Experimental Static Test Methods	29
3.1.1 Uniaxial Tension and Compression Methods	29
3.1.2 Equibiaxial Method	30
3.1.3 Planar and Simple Shear Methods	31
3.2 Experimental Dynamic Test Methods	32
3.2.1 Choice of Test Method	32
3.2.2 Creep and Stress Relaxation Methods	33
3.2.3 Torsion Pendulum Method	35
3.2.4 Forced Vibration Non-Resonance Methods	36
3.2.5 Resonance Methods	39
3.2.6 Wave Propagation Methods	44

3.3	Characterisation of the Complex Moduli of Materials	46
3.3.1	Illustrative Experimental Procedures	46
3.3.2	Method of Reduced Variables	48
3.3.3	Models for Representing Complex Moduli	52
4	General FEA Procedures/Guidelines	55
4.1	Initial Considerations	55
4.2	Choice of Finite Elements	55
4.2.1	Linear versus Quadratic Elements	56
4.2.2	Full versus Reduced Integration	56
4.2.3	Compressible versus Incompressible Material Behaviour	57
4.3	Choice of Material Models/Properties and Type of Analysis	57
4.3.1	Instantaneous or Long-term Modulus for Static Elastic Analysis	58
4.3.2	Hyperelastic Material Models for Static Hyperelastic Analysis	58
4.3.3	Relaxation Moduli for Time Domain Dynamic Analysis	59
4.3.4	Complex Moduli for Frequency Domain Dynamic Analysis	59
5	Examples of Static Analysis of Viscoelastic Components using FEM	61
5.1	Static Stress Distribution in a Cantilevered Lap-Jointed Beam	61
5.1.1	Geometrical and material properties	61
5.1.2	Finite element analysis	61
5.1.3.	Discussion of results	63
5.2	Hyperelastic Behaviour of Rubber Mount	66
5.2.1	Finite element modelling	66
5.2.2	Discussion of results	68
6	Examples of Time Domain Dynamic Analysis of Viscoelastic Components using FEM	73
6.1	Transient Response of Mechanical Filters	73
6.1.1	Derivation of Extensional Relaxation Modulus	73
6.1.2	Finite Element Model	76
6.1.3	Discussion of Results	76
6.2	Shock Loading of Rubber Mounts	78
6.2.1	Derivation of Prony Series Constants	79
6.2.2	Finite Element Model	79
6.2.3	Discussion of Results	80
7	Examples of Frequency Domain Analysis of Viscoelastic Components using FEM	85
7.1	Vibration Transmissibility of Rubber Isolators	85

7.1.1	Finite Element Modelling	85
7.1.2	Predicted and Measured Characteristics	87
7.2	Vibration Characteristics of Potted Beam and Plate	89
7.2.1	Finite Element Analysis	89
7.2.2	Discussion of Results	91
8	Concluding Remarks	95
9	References	97
Appendix: Description of ABAQUS FEA Elements Used in Examples		101
Glossary of Terms		103