

Contents

- 1. Introduction 7**
- 2. Theory of elasticity 14**
 - 2.1 Elastic parameters 15
 - 2.2 Stresses and Strains in a continuum 17
 - 2.3 Boussinesq's equations 23
- 3. Assumptions of the theory of elasticity versus reality 30**
 - 3.1 Stress concentration 31
 - 3.2 Anisotropy 33
 - 3.3 Shear sensitivity 34
 - 3.4 Probabilistic stress distribution 36
- 4. Odemark's method 38**
 - 4.1 Example of the Use of Odemark's Method 41
 - 4.2 Westergaard's equations for rigid pavements 43
- 5. The Finite Element Method (FEM) 48**
- 6. Non-linear models 53**
- 7. Viscous and visco-elastic models (Rheology) 59**
 - 7.1 Kelvin model 60
 - 7.2 Maxwell model 63
 - 7.3 Burgers model 64
 - 7.4 Parabolic element 66
 - 7.5 The SHRP model 67
 - 7.6 Temperature shift factor 68
- 8. Distinct Element Method 70**
 - 8.1 Two dimensional stress distribution 71
 - 8.2 Biaxial tests on angular elements 78
- 9. Structural damage prediction 87**
 - 9.1 Example of HDM III model 88
 - 9.2 Deflection is a poor substitute for bearing capacity 92
 - 9.3 Asphalt strain criteria 94
 - 9.4 Continuum Damage Mechanics 97
 - 9.4.1 Damage based on Actual Stress 99
 - 9.4.2 Damage based on Energy Density 100
 - 9.4.3 Damage based on Delayed Elastic Energy Density 102
 - 9.5 Finite Element simulation of asphalt damage 104

9.6	Visible cracks in asphalt pavements	107
9.7	Cracking of Portland Cement bound materials	109
10.	Plastic deformation	113
11.	Roughness	120
11.1	The AASHTO design equation for flexible pavements	120
11.2	Mathematical Model of Pavement Performance (MMOPP)	123
11.2.1	Spatial variation of pavement parameters	124
11.2.2	Climatic variations	127
11.2.3	Loading	128
12	Determination of moduli	133
12.1	Laboratory tests and equations based on standard tests	133
12.2	In Situ tests	136
12.2.1	Wave propagation methods	136
12.2.2	Falling Weight Deflectometer (FWD)	139
12.3	Design values	146
13	Verification of response and performance models	151
13.1	Verifying response models	151
13.2	Verifying performance models	159
13.3	Verification using a PMS (PERS)	163
14	Surfacing characteristics	169
14.1	Skid resistance	169
14.2	Ageing	171
14.3	Surface wear	172
15	Uniform subsections	173
16	User effects	177
16.1	Vehicle operating costs	177
16.2	Accident costs	183
16.3	Other effects	184
17	Optimisation	186
18	Conclusion	190
References		192
Index		201