Contents

Foreword xxiii
Preface XXV
FOUNDATIONS 3

| Introduction 5
I.I The Art of Language Design 7

1.2 The Programming Language Spectrum I

1.3 Why Study Programming Languages? 14

1.4 Compilation and Interpretation 17

1.5 Programming Environments 24

1.6 An Overview of Compilation 26

[.6.1 Lexical and Syntax Analysis 28

[.6.2 Semantic Analysis and Intermediate Code Generation 32

|.6.3 Target Code Generation 34

.64 Code Improvement 36

1.7 Summary and Concluding Remarks 37

|.8 Exercises 38

1.9 Explorations 39

1.10 Bibliographic Notes 40

2 Programming Language Syntax 43
2.1 Specifying Syntax: Regular Expressions and Context-Free Grammars 44

2.1.1" Tokens and Regular Expressions 45

2.1.2 Context-Free Grammars 48

2.1.3 Derivations and Parse Trees 50



Contents

22

23

24

25
2.6
2.7
28

Scanning
2.2.1 Generating a Finite Automaton
2.2.2 Scanner Code
2.2.3 Table-Driven Scanning
224 Lexical Errors
2.2.5 Pragmas

Parsing
2.3.1 Recursive Descent
2.3.2 Writing an LL(1) Grammar
2.3.3 Table-Driven Top-Down Parsing
2.34 Bottom-Up Parsing
2.3.5 Syntax Errors

Theoretical Foundations
24.1 Finite Automata
2.4.2 Push-Down Automata
24.3 Grammar and Language Classes

Summary and Concluding Remarks
Exercises
Explorations

Bibliographic Notes

3 Names, Scopes, and Bindings

3.1 The Notion of Binding Time

32

3.3

34

Object Lifetime and Storage Management
3.2.1 Static Allocation
3.2.2 Stack-Based Allocation
3.2.3 Heap-Based Allocation
3.24 Garbage Collection

Scope Rules
3.3.1 Static Scoping
3.3.2 Nested Subroutines
3.3.3 Declaration Order
3.34 Modules
3.3.5 Module Types and Classes
3.3.6 Dynamic Scoping

Implementing Scope
34.1 Symbol Tables

3.4.2 Association Lists and Central Reference Tables

c-1

c-13
c-13
c-18
c-19

c-26
C-26
c-31

54
56
6l
65
65
67

69
73
79
82
89
102

103 -

104
105
112
112

115
116

118
19
120
122
124

125
126
127
130
135
139
142

144



35

3.6

3.7
38

3.9
3.10
311
3:12

The Meaning of Names within a Scope
35.1 Aliases
3.5.2 Overloading

The Binding of Referencing Environments
3.6.1 Subroutine Closures
3.6.2 First-Class Values and Unlimited Extent
3.6.3 Object Closures
3.64 Lambda Expressions

Macro Expansion

Separate Compilation
3.8.1 Separate Compilation in C
3.8.2 Packages and Automatic Header Inference
3.8.3 Module Hierarchies

Summary and Concluding Remarks
Exercises
Explorations

Bibliographic Notes

4 Semantic Analysis

4.1
42
43
44
4.5

4.6
4.7
48
49
4.10

The Role of the Semantic Analyzer
Attribute Grammars

Evaluating Attributes

Action Routines

Space Management for Attributes
4.5.1 Bottom-Up Evaluation
4.5.2 Top-Down Evaluation

Tree Grammars and Syntax Tree Decoration
Summary and Concluding Remarks
Exercises

Explorations

Bibliographic Notes

5 Target Machine Architecture

5.1
5.2

The Memory Hierarchy

Data Representation

Contents

c-36
c-37
c-40
c-41

c-45
C-45
c-50

c-60
c-61
C-63

Xi

145
145
147

152
153
155
157
159

162
165

165
167
175
177

79
180
184
187
195
200

201
208
209
214
215

- 217



Xii

Contents

53

54

5.5

5.6
5.7
5.8
59

5.2.1 Integer Arithmetic
5.2.2 Floating-Point Arithmetic

Instruction Set Architecture (ISA)
53.1 Addressing Modes
5.3.2 Conditions and Branches

Architecture and Implementation
5.4.1 Microprogramming
5.4.2 Microprocessors
54.3 RISC
544 Multithreading and Multicore
545 Two Example Architectures: The x86 and ARM

Compiling for Modern Processors
5.5.1 Keeping the Pipeline Full
5.5.2 Register Allocation

Summary and Concluding Remarks
Exercises
Explorations

Bibliographic Notes

CORE ISSUES IN LANGUAGE DESIGN

6 Control Flow

6.1

6.2

Expression Evaluation
6.1.1 Precedence and Associativity
6.1.2 Assignments
6.1.3 Initialization
6.1.4 Ordering within Expressions
6.1.5 Short-Circuit Evaluation

Structured and Unstructured Flow
6.2.1 Structured Alternatives to goto
6.2.2 Continuations

6.3 Sequencing

6.4 Selection

6.5

6.4.1 Short-Circuited Conditions
6.4.2 Case/Switch Statements

Iteration

c-65
c-67

c-70
c-71
c-72
C-75
c-76
c-77
C-77
c-78
c-80
c-88
c-89
c-93
c-98
c-100
c-104

c-105

221

223

224
226
229
238
240
243

246
247
250

252

253
254
256

261



Contents

6.5.1 Enumeration-Controlled Loops

6.5.2 Combination Loops

6.5.3 lterators

6.5.4 Generators in Icon c-107
6.5.5 Logically Controlled Loops

6.6 Recursion
6.6.1 lteration and Recursion
6.6.2 Applicative- and Normal-Order Evaluation

6.7 Nondeterminacy c-110
6.8 Summary and Concluding Remarks

6.9 Exercises

6.10 Explorations

6.11 Bibliographic Notes
7 Type Systems

7.1 Overview
7.1.1" The Meaning of “Type"”
7.1.2 Polymorphism
7.1.3 Orthogonality
7.1.4 Classification of Types

7.2 Type Checking
7.2.1 Type Equivalence
7.2.2 Type Compatibility
7.2.3 Type Inference
7.2.4 Type Checking in ML

7.3 Parametric Polymorphism
7.3.1 Generic Subroutines and Classes
7.3.2 Generics in C++, Java, and C# c-119

7.4 Equality Testing and Assignment
7.5 Summary and Concluding Remarks
7.6 Exercises

7.7 Explorations

7.8 Bibliographic Notes

8 Composite Types

8.1 Records (Structures)

xiii

262
266
268
274
275

277
277
282

283
284
286
292
294

297

298
300
302
302
305

312
313
320
324
326

331
333

= 339

340
342
344
347
348

351
351



Xiv Contents

8.1.1 Syntax and Operations
8.1.2 Memory Layout and Its Impact
8.1.3 Variant Records (Unions)

8.2 Arrays
8.2.1 Syntax and Operations
8.2.2 Dimensions, Bounds, and Allocation
8.2.3 Memory Layout

8.3 Strings
8.4 Sets

8.5 Pointers and Recursive Types
8.5.1 Syntax and Operations
8.5.2 Dangling References
8.5.3 Garbage Collection

8.6 Lists

8.7 Files and Input/Output
8.7.1 Interactive I/O
8.7.2 File-Based I/O
8.7.3 Text /O

8.8 Summary and Concluding Remarks
8.9 Exercises
8.10 Explorations

8.11 Bibliographic Notes

9 Subroutines and Control Abstraction
9.1 Review of Stack Layout

9.2 Calling Sequences
9.2.1 Displays
9.2.2 Stack Case Studies: LLVM on ARM; gcc on x86
9.2.3 Register Windows
9.24 In-Line Expansion

9.3 Parameter Passing
9.3.1 Parameter Modes
9.3.2 Call by Name
9.3.3 Special-Purpose Parameters
9.34 Function Returns

9.4 Exception Handling

c-136

C-144

c-148 -

c-148
c-149
c-151

c-163
c-167
c-177

c-180 -

352
353

« 357

359
359
363
368

375
376

377
378
388
389

398
401

402
404
409
410

411
412
414

< 417
- 417
- 419

419

422
423
433
433
438

440



9.4.1 Defining Exceptions
9.4.2 Exception Propagation
9.4.3 Implementation of Exceptions

9.5 Coroutines
9.5.1 Stack Allocation
9.5.2 Transfer
9.5.3 Implementation of Iterators
9.54 Discrete Event Simulation

9.6 Events
9.6.1 Sequential Handlers
9.6.2 Thread-Based Handlers

9.7 Summary and Concluding Remarks
9.8 Exercises
9.9 Explorations

9.10 Bibliographic Notes

10 Data Abstraction and Object Orientation

10.1 Object-Oriented Programming
[0.1.1 Classes and Generics

10.2 Encapsulation and Inheritance
10.2.1 Modules
1022 Classes
10.2.3 Nesting (Inner Classes)
1024 Type Extensions
10.2.5 Extending without Inheritance

10.3 Initialization and Finalization
10.3.1 Choosing a Constructor
10.3.2 References and Values
10.3.3 Execution Order
10.3.4 Garbage Collection

10.4 Dynamic Method Binding
[0.4.1 Virtual and Nonvirtual Methods
10.4.2 Abstract Classes
10.4.3 Member Lookup
1044 Object Closures

10.5 Mix-In Inheritance
10.5.1 Implementation
10.5.2 Extensions

Contents

c-183
c-187

444
445
447

450
453
454

© 456
© 456

456
457
459

461
462
467
468

471

473
481

485
486
488
490
491
494

495
496
498
502
504

505
508
508
509
513

516
517
519



XVi

Contents
10.6 True Multiple Inheritance c-194
[0.6.1 Semantic Ambiguities c-196
10.6.2 Replicated Inheritance C-200
10.6.3 Shared Inheritance c-201

10.7 Object-Oriented Programming Revisited
10.7.1 The Object Model of Smalltalk C-204

10.8 Summary and Concluding Remarks
10.9 Exercises
10.10 Explorations

10.11 Bibliographic Notes

ALTERNATIVE PROGRAMMING MODELS

Il Functional Languages
I'l.1 Historical Origins

1.2 Functional Programming Concepts

1.3 A Bit of Scheme
[1.3.1 Bindings
I'1.3.2 Lists and Numbers
['1.3.3 Equality Testing and Searching
I'1.3.4 Control Flow and Assignment
[1.3.5 Programs as Lists
[1.3.6 Extended Example: DFA Simulation in Scheme

1.4 A Bit of OCaml
I1.4.1 Equality and Ordering
[1.4.2 Bindings and Lambda Expressions
I'1.4.3 Type Constructors
I'1.44 Pattern Matching
I'1.4.5 Control Flow and Side Effects
I'1.4.6 Extended Example: DFA Simulation in OCaml

1 1.5 Evaluation Order Revisited
I'1.5.1 Strictness and Lazy Evaluation
[1.5.2 1/O: Streams and Monads

I1.6 Higher-Order Functions

11.7 Theoretical Foundations c-212
['1.7.1 Lambda Calculus c-214

« 52

522

- 523

524
525
528
529

533

535
536
537

539
542
543
544
545
547
548

550
553
554
555
559
563
565

567
569
571

576
580



Contents xvii

1'1.7.2 Control Flow c-217

['1.7.3 Structures c-219
I1.8 Functional Programming in Perspective 58I
1.9 Summary and Concluding Remarks 583
11.10 Exercises 584
I'1.11 Explorations 589
11.12 Bibliographic Notes 590
12 Logic Languages 591
12.1 Logic Programming Concepts 592
12.2 Prolog 593
[2.2.1 Resolution and Unification 595
1222 Lists 596
12.2.3 Arithmetic 597
1224 Search/Execution Order 598
12.2.5 Extended Example: Tic-Tac-Toe 600
[2.2.6 Imperative Control Flow 604
12.2.7 Database Manipulation 607
12.3 Theoretical Foundations C-226 - 612

12.3.1 Clausal Form C-227

12.3.2 Limitations c-228

12.3.3 Skolemization c-230
12.4 Logic Programming in Perspective 613
12.4.1 Parts of Logic Not Covered 613
1242 Execution Order 613
12.4.3 Negation and the “Closed World" Assumption 615
12.5 Summary and Concluding Remarks 616
12.6 Exercises 618
12.7 Explorations 620
12.8 Bibliographic Notes 620
13 Concurrency 623
13.1 Background and Motivation 624
[3.1.1 The Case for Multithreaded Programs 627
[3.1.2 Multiprocessor Architecture 631

13.2 Concurrent Programming Fundamentals 635



xviii Contents

33

13.4

13.5

13.6
13.7
13.8
13.9

[3.2.1 Communication and Synchronization
13.2.2 Languages and Libraries

13.2.3 Thread Creation Syntax

1324 Implementation of Threads

Implementing Synchronization
13.3.1 Busy-Wait Synchronization
13.3.2 Nonblocking Algorithms
13.3.3 Memory Consistency
[3.34 Scheduler Implementation
13.3.5 Semaphores

Language-Level Constructs

[3.4.1 Monitors

13.4.2 Conditional Critical Regions
13.4.3 Synchronization in Java
1344 Transactional Memory
13.4.5 Implicit Synchronization

Message Passing

13.5.]' Naming Communication Partners
13.5.2 Sending

13.5.3 Receiving

13.54 Remote Procedure Call

Summary and Concluding Remarks
Exercises
Explorations

Bibliographic Notes

14 Scripting Languages

14.1

14.2

What Is a Scripting Language?
14.1.1 Common Characteristics

Problem Domains
[4.2.1 Shell (Command) Languages

14.2.2 Text Processing and Report Generation

[4.2.3 Mathematics and Statistics

1424 "Glue"” Languages and General-Purpose Scripting

14.2.5 Extension Languages

14.3 Scripting the World Wide Web

14.3.1 CGl Scripts
14.3.2 Embedded Server-Side Scripts

C-235
C-235
C-239
C-244
C-249

635
637
638
647

652
653
657
659
663
667

669
669
674
676
679
683

© 687

688
690
695
697

699

700
701

704
705
712
717
718
724

727
728
729



Contents

14.3.3 Client-Side Scripts
14.3.4 Java Applets and Other Embedded Elements
14.3.5 XSLT C-258

14.4 Innovative Features
14.4.1 Names and Scopes
14.4.2 String and Pattern Manipulation
14.4.3 Data Types
1444 Object Orientation

14.5 Summary and Concluding Remarks
14.6 Exercises
14.7 Explorations

14.8 Bibliographic Notes

A CLOSER LOOK AT IMPLEMENTATION

I5 Building a Runnable Program

15.1 Back-End Compiler Structure
I5.1.1 A Plausible Set of Phases
I5.1.2 Phases and Passes

15.2 Intermediate Forms
[5.2.1 GIMPLE and RTL c-273
15.2.2 Stack-Based Intermediate Forms

15.3 Code Generation
[5.3.1 An Attribute Grammar Example
1532 Register Allocation

5.4 Address Space Organization

15.5 Assembly
I5.5.1 Emitting Instructions
1552 Assigning Addresses to Names

15.6 Linking
[5.6.1 Relocation and Name Resolution
15.6.2 Type Checking

15.7 Dynamic Linking c-279
15.7.1 Position-Independent Code C-280
15.7.2 Fully Dynamic (Lazy) Linking C-282

Xix

734
734
736

738
739
743
751
757

764
765
769
771

773

775

775
776
780

780

- 782

782

784
785
787

790

792
794
796

797
798
799

- 800



Contents

15.8 Summary and Concluding Remarks
15.9 Exercises
15.10 Explorations

15.11 Bibliographic Notes

16 Run-Time Program Management

16.1 Virtual Machines
[6.1.1 The Java Virtual Machine
[6.1.2 The Common Language Infrastructure

16.2 Late Binding of Machine Code
16.2.] Just-in-Time and Dynamic Compilation
16.2.2 Binary Translation
16.2.3 Binary Rewriting
16.2.4 Mobile Code and Sandboxing

16.3 Inspection/Introspection
16.3.1 Reflection
16.3.2 Symbolic Debugging
16.3.3 Performance Analysis

16.4 Summary and Concluding Remarks
16.5 Exercises
16.6 Explorations

16.7 Bibliographic Notes

17 Code Improvement
I17.1 Phases of Code Improvement
17.2 Peephole Optimization

17.3 Redundancy Elimination in Basic Blocks
17.3.1 A Running Example
17.3.2 Value Numbering

17.4 Global Redundancy and Data Flow Analysis
17.4.1 SSA Form and Global Value Numbering
17.4.2 Global Common Subexpression Elimination

17.5 Loop Improvement |
17.5.1 Loop Invariants
17.5.2 Induction Variables

17.6 Instruction Scheduling

802
803
805
806
807
810
812

c-286 - 820
822
822
828
833
835
837
837
845
848
850
851
853
854

c297 - 857

299

c-301

c-304

c-305

c-307

c-312

c-312

c-315

c-323

c-323

c-325

c-328



17.7 Loop Improvement Il
17.7.1 Loop Unrolling and Software Pipelining
|7.7.2 Loop Reordering

17.8 Register Allocation

17.9 Summary and Concluding Remarks
17.10 Exercises
I7.11 Explorations

17.12 Bibliographic Notes
A Programming Languages Mentioned
B Language Design and Language Implementation
C Numbered Examples
Bibliography

Index

Contents

C-332
c-332
C-337

C-344
C-348
c-349
€-353
C-354

XXi

859
871
877
891

911



