

HEADINGS	PAGE
Précis	2
Acknowledgements	3
Contents	5
1. Life-Cycle Costing: Background	8
2. Life-Cycle Analysis: Costing and Assessment	15
3. Post-Construction Repair, Maintenance and Refurbishment	23
4. Discounted Cash Flow	33
5. Risk	37
6. Life Cycle Cost Analysis Procedure	41
7. Standardisation: Elements and Components	50
8. Downsizing Database Variables	59
9. Cumulative Effect of LCC of Components	62
10. Life Cycle Cost Modelling	64
11. Towards a Life-Cycle Cost Analysis Tool	73
12. LCC Analysis Tool: IT Format Descriptor	84
13. LCC Analysis Tool: Case Study Synopsis	100
14. Notes and References	104

CONTENTS	PAGE
1. Life-Cycle Costing: Background	8
1.1. Definition	8
1.2. Origins	8
1.3. Prediction	9
1.4. Usage	9
1.5. Cost Variables	11
1.6. Selective usage	12
1.7. Post-Production LCC	13
1.8. The Future	14
2. Life-Cycle Analysis: Costing and Assessment	15
2.1. Life Cycle Costing	15
2.2. Life Cycle Assessment	15
2.3. LCA Objectivity Requirements	16
2.4. Integrating LCA and LCC	16
2.5. Generating demand for Life Cycle Cost Assessment	17
2.6. Designing for Cost	18
2.7. Suggestions toward Environmentally-Conscious-Design	18
2.8. The Way Forward	21
3. Post-Construction Repair, Maintenance and Refurbishment	23
3.1. Maintenance Market	23
3.2. Life Span Considerations	24
3.3. Extending life	25
3.4. Data Collection and Cost Prediction	26
3.5. Historical Life-Span Data	28
3.6. Pro-active Life Cycle Cost Assessment	32
4. Discounted Cash Flow	33
4.1. Inexact Science	33
4.2. Appraisal & Discounting Techniques	33
4.3. NPV (Present Worth): Examples	34
4.4. Best Fit Predictions	35
4.5. Existing Economic Climate	35
5. Risk	37
5.1. Predicting the future	37
5.2. Risk-management	37
5.3. Probabilistic and Sensitivity approaches	38
6. Life Cycle Cost Analysis Procedure	41
6.1. Inter-relationship of LCC variables	41
6.2. Difficulties in LCC practice	41
6.3. Value Engineering	42
6.4. LCC Approaches and Techniques	43
6.5. Example of a general framework for LCC analysis	45

7. Standardisation: Elements & Components	50
7.1. Different elements in different environments	50
7.2. Standard Listing of Elements	51
7.3. Co-ordinated Project Information	51
7.4. Elemental Coding	53
7.5. Maintenance Standards (BMI)	55
7.6. Further Component Division	56
7.7. Building Element Standards	58
8. Downsizing Database Variables	59
8.1. Pareto's 80:20 rule	59
8.2. Cost (and Quantity) Significant Items	59
9. Cumulative Effect of LCC of Components	62
9.1. Linking Components	62
10. Life Cycle Cost Modelling	64
10.1. Mathematical Modelling	64
10.2. Physical Modelling and Information Technology	66
10.3. Building Information Modelling	67
10.4. Object orientated modelling	68
10.5. Existing LCC software support	69
11. Towards a Life-Cycle Cost Analysis Tool	73
11.1. Significant cost items (of operation and maintenance)	73
11.2. Appropriate level or elemental division of the project	74
11.3. Specification of material: design brief & service-life	75
11.4. Factors affecting component deterioration and failure	76
11.5. Maintenance, cleaning and operational cost variables	81
11.6. Net present value indicators for whole cost	83
12. LCC Analysis Tool: IT format descriptor	84
12.1. Flowchart	84
12.2. Computer application	91
12.3. Drop down menus	91
13 LCC: case-study	100
13.1. Information input	100
13.2. LCC execution summary sheets	100
13.3. Comparison sheets	101
13.4. Detailed LCC comparison sheets	102
13.5. Information output	103
13.6. Time: the fourth dimension	103
14 Notes and References	104