

Contents

<i>Preface</i>	vii
<i>Acknowledgements</i>	ix
1 Types and History of Steel Bridges	1
1.1 Bridge types	1
1.2 History of bridges	2
2 Types and Properties of Steel	37
2.1 Introduction	37
2.2 Properties	38
2.3 Yield stress	39
2.4 Ductility	41
2.5 Notch ductility	41
2.6 Weldability	44
2.7 Weather resistance	45
2.8 Commercially available steels	45
2.9 Recent developments	48
References	48
3 Loads on Bridges	51
3.1 Dead loads	51
3.2 Live loads	51
3.3 Design live loads in different countries	53
3.4 Recent developments in bridge loading	58
3.5 Longitudinal forces on bridges	63
3.6 Wind loading	64
3.7 Thermal forces	68
3.8 Other loads on bridges	71
3.9 Load combinations	71
References	73

4 Aims of Design	75
4.1 Limit state principle	75
4.2 Permissible stress method	76
4.3 Limit state codes	77
4.4 The derivation of partial safety factors	79
4.5 Partial safety factors in BS 5400	86
References	90
5 Rolled Beam and Plate Girder Design	91
5.1 General features	91
5.2 Analysis for forces and moments	94
5.3 Lateral buckling of beams	96
5.4 Local buckling of plate elements	109
5.5 Design of stiffeners in plate girders	135
5.6 Restraint at supports	148
5.7 In-plane restraint at flanges	149
5.8 Design example of a stiffened girder web	153
References	158
6 Stiffened Compression Flanges of Box and Plate Girders	159
6.1 General features	159
6.2 Buckling of flange plate	160
6.3 Overall buckling of strut	162
6.4 Allowance for shear and transverse stress in flange plate	164
6.5 Orthotropic buckling of stiffened flange	165
6.6 Continuity of longitudinal stiffeners over transverse members	169
6.7 Local transverse loading on stiffened compression flange	173
6.8 Effect of variation in the bending moment of a girder	174
6.9 Transverse stiffeners in stiffened compression flanges	174
6.10 Stiffened compression flange without transverse stiffeners	177
6.11 A design example of stiffened compression flange	178
References	182
7 Cable-stayed Bridges	183
7.1 History	183
7.2 Cable-stay systems	187
7.3 Cable types	188
7.4 Cable properties	195
7.5 Design and construction of a cable-stayed bridge	199
Reference	201
<i>Index</i>	203