
Contents

<i>Preface</i>	xi
<i>Acknowledgements</i>	xiii
<i>Frequently used acronyms</i>	xv
1 A few preliminary fundamentals	1
1.1 <i>Introduction</i> 1	
1.2 <i>Modelling vibrations and vibrating systems</i> 1	
1.3 <i>Some basic concepts</i> 3	
1.3.1 <i>The phenomenon of beats</i> 5	
1.3.2 <i>Displacement, velocity, acceleration and decibels</i> 6	
1.4 <i>Springs, dampers and masses</i> 8	
2 Formulating the equations of motion	13
2.1 <i>Introduction</i> 13	
2.2 <i>Systems of material particles</i> 14	
2.2.1 <i>Generalised co-ordinates, constraints and degrees of freedom</i> 15	
2.3 <i>Virtual work and d'Alembert's principles – Lagrange and Hamilton equations</i> 16	
2.3.1 <i>Hamilton's equations (HEs)</i> 20	
2.4 <i>On the properties and structure of Lagrange's equations</i> 24	
2.4.1 <i>Invariance in the form of LEs and monogenic forces</i> 24	
2.4.2 <i>The structure of the kinetic energy and of Lagrange equations</i> 24	
2.4.3 <i>The energy function and the conservation of energy</i> 28	
2.4.4 <i>Elastic forces, viscous forces and Rayleigh dissipation function</i> 29	

2.4.5	<i>More co-ordinates than DOFs: Lagrange's multipliers</i>	32
2.5	<i>Hamilton's principle</i>	34
2.5.1	<i>More than one independent variable: continuous systems and boundary conditions</i>	38
2.6	<i>Small-amplitude oscillations</i>	44
2.7	<i>A few complements</i>	48
2.7.1	<i>Motion in a non-inertial frame of reference</i>	48
2.7.2	<i>Uniformly rotating frame</i>	51
2.7.3	<i>Ignorable co-ordinates and the Routh function</i>	53
2.7.4	<i>The Simple pendulum again: a note on non-small oscillations</i>	56
3	Finite DOFs systems: Free vibration	59
3.1	<i>Introduction</i>	59
3.2	<i>Free vibration of 1-DOF systems</i>	59
3.2.1	<i>Logarithmic decrement</i>	65
3.3	<i>Free vibration of MDOF systems: the undamped case</i>	67
3.3.1	<i>Orthogonality of eigenvectors and normalisation</i>	68
3.3.2	<i>The general solution of the undamped free-vibration problem</i>	70
3.3.3	<i>Normal co-ordinates</i>	72
3.3.4	<i>Eigenvalues and eigenvectors sensitivities</i>	78
3.3.5	<i>Light damping as a perturbation of an undamped system</i>	80
3.3.6	<i>More orthogonality conditions</i>	82
3.3.7	<i>Eigenvalue degeneracy</i>	83
3.3.8	<i>Unrestrained systems: rigid-body modes</i>	84
3.4	<i>Damped systems: classical and non-classical damping</i>	87
3.4.1	<i>Rayleigh damping</i>	88
3.4.2	<i>Non-classical damping</i>	90
3.5	<i>GEPs and QEPs: reduction to standard form</i>	92
3.5.1	<i>Undamped Systems</i>	93
3.5.2	<i>Viscously damped systems</i>	94
3.6	<i>Eigenvalues sensitivity of viscously damped systems</i>	96
4	Finite-DOFs systems: Response to external excitation	99
4.1	<i>Introduction</i>	99
4.2	<i>Response in the time-, frequency- and s-domains: IRF, Duhamel's integral, FRF and TF</i>	100

4.2.1	<i>Excitation due to base displacement, velocity or acceleration</i>	105
4.3	<i>Harmonic and periodic excitation</i>	107
4.3.1	<i>A few notes on vibration isolation</i>	110
4.3.2	<i>Eccentric excitation</i>	112
4.3.3	<i>Other forms of FRFs</i>	114
4.3.4	<i>Damping evaluation</i>	116
4.3.5	<i>Response spectrum</i>	117
4.4	<i>MDOF systems: classical damping</i>	120
4.4.1	<i>Mode ‘truncation’ and the mode-acceleration solution</i>	122
4.4.2	<i>The presence of rigid-body modes</i>	125
4.5	<i>MDOF systems: non-classical viscous damping, a state-space approach</i>	126
4.5.1	<i>Another state-space formulation</i>	129
4.6	<i>Frequency response functions of a 2-DOF system</i>	133
4.7	<i>A few further remarks on FRFs</i>	137
5	Vibrations of continuous systems	139
5.1	<i>Introduction</i>	139
5.2	<i>The Flexible String</i>	140
5.2.1	<i>Sinusoidal waveforms and standing waves</i>	142
5.2.2	<i>Finite strings: the presence of boundaries and the free vibration</i>	143
5.3	<i>Free longitudinal and torsional vibration of bars</i>	148
5.4	<i>A short mathematical interlude: Sturm–Liouville problems</i>	150
5.5	<i>A two-dimensional system: free vibration of a flexible membrane</i>	156
5.5.1	<i>Circular membrane with fixed edge</i>	158
5.6	<i>Flexural (bending) vibrations of beams</i>	162
5.7	<i>Finite beams with classical BCs</i>	163
5.7.1	<i>On the orthogonality of beam eigenfunctions</i>	167
5.7.2	<i>Axial force effects</i>	168
5.7.3	<i>Shear deformation and rotary inertia (Timoshenko beam)</i>	170
5.8	<i>Bending vibrations of thin plates</i>	174
5.8.1	<i>Rectangular plates</i>	176
5.8.2	<i>Circular plates</i>	180
5.8.3	<i>On the orthogonality of plate eigenfunctions</i>	181
5.9	<i>A few additional remarks</i>	182

5.9.1	<i>Self-adjointness and positive-definiteness of the beam and plate operators</i>	182
5.9.2	<i>Analogy with finite-DOFs systems</i>	185
5.9.3	<i>The free vibration solution</i>	188
5.10	<i>Forced vibrations: the modal approach</i>	190
5.10.1	<i>Alternative closed-form for FRFs</i>	199
5.10.2	<i>A note on Green's functions</i>	201
6	Random vibrations	207
6.1	<i>Introduction</i>	207
6.2	<i>The concept of random process, correlation and covariance functions</i>	207
6.2.1	<i>Stationary processes</i>	212
6.2.2	<i>Main properties of correlation and covariance functions</i>	214
6.2.3	<i>Ergodic processes</i>	216
6.3	<i>Some calculus for random processes</i>	219
6.4	<i>Spectral representation of stationary random processes</i>	223
6.4.1	<i>Main properties of spectral densities</i>	227
6.4.2	<i>Narrowband and broadband processes</i>	229
6.5	<i>Response of linear systems to stationary random excitation</i>	232
6.5.1	<i>SISO (single input-single output) systems</i>	233
6.5.2	<i>SDOF-system response to broadband excitation</i>	236
6.5.3	<i>SDOF systems: transient response</i>	237
6.5.4	<i>A note on Gaussian (normal) processes</i>	239
6.5.5	<i>MIMO (multiple inputs–multiple outputs) systems</i>	241
6.5.6	<i>Response of MDOF systems</i>	243
6.5.7	<i>Response of a continuous system to distributed random excitation: a modal approach</i>	245
6.6	<i>Threshold crossing rates and peaks distribution of stationary narrowband processes</i>	249
<i>Appendix A: On matrices and linear spaces</i>	255	
<i>Appendix B: Fourier series, Fourier and Laplace transforms</i>	289	
<i>References and further reading</i>	311	
<i>Index</i>	317	