

Table of contents

Preface	XXI
Conference organization	XXIII
List of reviewers	XXVII

WM session

WM-2 Probabilistic and statistical predication (1)

WM-2-1 Prediction of bridge live load effects based on the theory of extremes <i>M. Gindy & H.H. Nassif</i>	3
WM-2-2 The fragility curves method: A simple procedure in the structural lifetime prediction <i>E. Garavaglia</i>	5
WM-2-3 Statistical properties of self-affine fractal dimension of ground motions and geotechnical conditions <i>T. Nakamichi, T. Takahashi & T. Hida</i>	9

WM-3 Random Vibration (1)

WM-3-1 Frequency-domain analysis of nonlinear wave effects and inundation effects on offshore platform response <i>X.Y. Zheng & T. Moan</i>	13
WM-3-2 Evolutionary spectrum approach for ground motion generation <i>P. Varpasuo</i>	15
WM-3-3 Efficient path integration by FFT <i>E. Mo & A. Naess</i>	17

WM-4 OS15 Theoretical improvement for health monitoring

WM-4-1 Application of the Bayesian approach in crack detection utilizing spatial wavelet transform <i>H.F. Lam & C.T. Ng</i>	19
WM-4-2 Information-based formulation for probabilistic concrete shrinkage models updating <i>W. Raphael, S. Daher, R. Faddoul & A. Chateauneuf</i>	23
WM-4-3 Impedance-based structural health monitoring using an outlier analysis <i>S. Park, C.-B. Yun & D.J. Inman</i>	25

WM-5 OS21 Developments in the JCSS

WM-5-1 Public risk acceptability criteria: From case-studies towards a general model code <i>R. Rackwitz & A. Lentz</i>	31
WM-5-2 Principles of risk assessment of engineered systems <i>M.H. Faber, M.A. Maes, J.W. Baker, T. Vrouwenvelder & T. Takada</i>	33
WM-5-3 Practical methods of structural reliability <i>A.C.W.M. Vrouwenvelder & M.H. Faber</i>	35

WA session

WA-2 Computational methods in reliability and risk assessment

WA-2-1 Development of evaluation method for failure probability from residual life evaluation using Bayes' theorem <i>S. Okajima, S. Izumi & S. Sakai</i>	39
WA-2-2 Response surface with random factors for seismic fragility of RC frames <i>N. Buratti, B. Ferracuti & M. Savoia</i>	41
WA-2-3 An adaptive response surface method based on double weighted regression <i>X.S. Nguyen, F. Duprat, A. Sellier & G. Pons</i>	43
WA-2-4 Statistical mechanics of reliability of brittle and quasibrittle structures and size-dependent of understrength safety factors: From nano to macro <i>S.-D. Pang & Z. P. Bažant</i>	45
WA-2-5 Matrix-based system reliability method and applications to bridge networks <i>W.-H. Kang, J. Song & P. Gardoni</i>	47
WA-2-6 Characterization of risk, hazard and vulnerability in natural disasters <i>Y. Fujino & M. Abe</i>	49

WA-3 OS13 Life-cycle cost

WA-3-1 Stochastic DCF method in seismic measure for water supply systems <i>M. Hoshiya & K. Yamamoto</i>	53
WA-3-2 Condition-reliability aspects for the probabilistic lifetime optimization of structures <i>A. Strauss, D.M. Frangopol & K. Bergmeister</i>	55
WA-3-3 Sustainable infrastructure development for Guizhou province in southwest China: A life cycle assessment approach <i>E. Ou, R. Corotis & Y. Xi</i>	57
WA-3-4 Preferred seismic design levels for different risk attitudes <i>K. Goda & H.P. Hong</i>	59
WA-3-5 On structural performance vs. societal economic growth <i>K. Nishijima & M.H. Faber</i>	61
WA-3-6 Repair efficiency and timing of maintenance for RC structures subjected to spatially variable corrosion damage <i>J.A. Mullard & M.G. Stewart</i>	63

WA-4 OS15 Health monitoring for bridges

WA-4-1 Application of total least squares algorithm for damage identification of bridges under a moving vehicle <i>C.W. Kim & M. Kawatani</i>	65
WA-4-2 Towards Health Monitoring of bridge systems using strong motion data <i>Y. Arici & K.M. Mosalam</i>	69
WA-4-3 Seismic protection of base isolated bridge using adaptive passive control system <i>H.J. Jung, K.M. Choi & S.W. Cho</i>	71
WA-4-4 Probabilistic fatigue load spectra for riveted railway bridges <i>B.M. Imam, T.D. Righiniotis & M.K. Chryssanthopoulos</i>	73
WA-4-5 Structural Health Monitoring (SHM) system implemented in Sorraia river bridge <i>J.C. Matos, H. Sousa, J.A. Figueiras & J.R. Casas</i>	75
WA-4-6 SHM development using system reliability <i>M. Susoy, F.N. Catbas & D.M. Frangopol</i>	79

WA-5 OS3 Reliability analysis and design in geotechnical engineering (1)

WA-5-1 Geotechnical probabilistic analysis using collocation-based stochastic response surface method <i>K.K. Phoon & S.P. Huang</i>	83
WA-5-2 Approximate reliability-based design with general geotechnical models by stochastic simulation <i>J. Ching & T.-R. Chen</i>	87
WA-5-3 On conditional estimation accuracy of spatial average of soil properties and sample size <i>Y. Honjo & B. Setiawan</i>	89
WA-5-4 Updating reliability of a geotechnical system using monitoring data <i>J. Ching & Y.-H. Hsieh</i>	91
WA-5-5 Reliability-based design of the foundation of an offshore wind energy converter using the Single Surface Hardening Model <i>A. Kisse & K. Lesny</i>	93
WA-5-6 A general procedure to determine load and resistance factors for geotechnical structures by Monte Carlo simulation <i>T.C. Kieu Le & Y. Honjo</i>	95

WA-6 Risk management

WA-6-1 Evaluation method of human cognitive ability based on psychometric measurement and statistical estimation <i>H. Hayashi, M. Nakagawa & H. Nakayasu</i>	101
WA-6-2 Macro and micro-zone snow load models for probabilistic design <i>D.V. Rosowsky & K.H. Lee</i>	103
WA-6-3 Visual attention and human reliability by visual motion study at driving simulator <i>H. Hayashi, T. Yagi, T. Miyoshi & H. Nakayasu</i>	105

WA-6-4 An evacuation plan from a fire following earthquake <i>T. Kanamori & T. Koike</i>	109
WA-6-5 Security risks and cost-effectiveness of risk mitigation strategies for the protection of buildings against terrorist threats <i>M.G. Stewart & M.D. Netherton</i>	111
WA-6-6 Probability-based vulnerability and criticality assessment of a highway bridge subjected to terrorist attack <i>M.T. Bensi & B. Bhattacharya</i>	113
WE session	
WE-2 Stochastic finite elements	
WE-2-1 Sensitivity analysis of the drying model on the delayed strain of concrete in containment vessel with a non intrusive stochastic response surface method <i>M. Berveiller, Y.L. Pape & B. Sudret</i>	117
WE-2-2 Application of the spectral stochastic finite element method to continuum damage modelling with softening behaviour <i>C.V. Verhoosel & M.A. Gutiérrez</i>	119
WE-2-3 Bayesian finite elements <i>T. Haukaas, P. Gardoni & A. Bebamzadeh</i>	121
WE-2-4 Identification of random field properties from bending tests on timber beams <i>C. Bucher, V. Ho & M.D. Pandey</i>	123
WE-2-5 Seismic reliability of frame structures emphasizing uncertainty in the frequency content <i>J. Huh & A. Haldar</i>	125
WE-2-6 SFE analysis of a steel connection component <i>N. Rhayma, Ph. Bressolette, J. Baroth & A. Bouchair</i>	127
WE-3 OS13 Life-cycle cost & OS 9 Reliability of deteriorating structures	
WE-3-1 Time-variant reliability assessment for corroded marine structures with non-linear behavior <i>M. Cazuguel & J.Y. Cognard</i>	131
WE-3-2 Structural reliability of RC structures subject to biodeterioration, corrosion and concrete cracking <i>E. Bastidas-Arteaga, M. Sánchez-Silva & A. Chateauneuf</i>	133
WE-3-3 Stochastic analysis of the multi-dimensional effect of chloride ingress into reinforced concrete <i>C. Frier & J.D. Sørensen</i>	135
WE-3-4 Time dependent structural reliability of reinforced concrete beams subjected to corrosion attack <i>K. Bhargava, Y. Mori, A.K. Ghosh & S. Ramanujam</i>	137
WE-3-5 Cost-benefit analysis of maintenance interventions for deteriorating structures <i>S. Higuchi & M. Macke</i>	141

WE-3-6 Comparing efficiency of systematic and conditional maintenance for randomly ageing components <i>E. Sheils, F. Schoefs, D. Breysse & A. O'Connor</i>	143
WE-4 OS15 New methodology for health monitoring	
WE-4-1 An image analysis based damage classification methodology <i>V. Pakrashi, A. O'Connor & F. Schoefs</i>	147
WE-4-2 Multi-pattern functions classification Neural Network using hybrid learning system of PSO and Back Propagation <i>R. Katade, T. Sakuda & S. Katsuki</i>	149
WE-4-3 Instantaneous reference-free crack detection based on the polarization characteristics of piezoelectric materials <i>H. Sohn & S.B. Kim</i>	153
WE-4-4 Statistical properties of member ductility demanded for deformation capacity of steel frames under seismic loads <i>K. Yamazaki & H. Idota</i>	155
WE-4-5 Optimum absorber parameters for linked structures with extensive mass-ratio and frequency-ratio <i>T. Takada & R. Iwasaki</i>	159
WE-4-6 Damage assessment of bridge structures using structural equation modeling <i>H. Furuta, H. Mori, M. Jido & T. Izawa</i>	161
WE-5 OS3 Reliability analysis and design in geotechnical engineering (2)	
WE-5-1 Risk evaluation and reliability-based design for improvement of earth-fill dams <i>S. Nishimura & K. Matsuura</i>	165
WE-5-2 Ultimate capacity of pile foundation on spatially random cohesive soil <i>S. Haldar & G. L. Sivakumar Babu</i>	167
WE-5-3 Spatial variability of undrained shear strength of marine clay from geostatistical approach <i>G.L. Yoon, K.W. Lee, Y.S. Chae, D.H. Kim & H.Y. Kim</i>	169
WE-5-4 Updating spatial variability uncertainties with in-situ test data <i>J. Ching, Y.-C. Chen, C.-F. Chang, C.-T. Chin & J.-R. Chen</i>	171
WE-5-5 Effects of spatial variability and statistical estimation error in prediction of settlement of a shallow foundation <i>Y. Honjo, M.N. Jilali & J. Ishino</i>	173
WE-6 Risk analysis	
WE-6-1 Vulnerability and integrity of structural systems <i>J. Agarwal & G.N. Liu</i>	177
WE-6-2 Robustness of structural systems – a new focus for the Joint Committee on Structural Safety (JCSS) <i>T.D.G. Canisius, J.D. Sørensen & J.W. Baker</i>	179

WE-6-3 Structural redundancy and robustness measures and their use in assessment and design <i>M. Ghosn & D.M. Frangopol</i>	181
WE-6-4 Multi-hazard risk assessment for performance-based engineering of wood-frame residential construction <i>Y. Li & B.R. Ellingwood</i>	183
WE-6-5 Statistical assessment of breach of irrigation tank embankment due to downpour <i>A. Kobayashi, Y. Yamamoto, S. Aoyama, T. Oka & K. Inoue</i>	185
WE-6-6 Reliability-based stability analysis and risk assessment for rock slides of Ramnefjell <i>H.S.B. Düzgün & E. Grimstad</i>	189
Keynote	
Recent progress in the development of mathematical-probabilistic corrosion models for long-term life assessment of steel infrastructure <i>R.E. Melchers</i>	191
TM session	
Probabilistic and statistical predication (2)	
TM-2-1 High-dimensional integration formulas for efficient SFE methods <i>Ph. Bressolette, J. Baroth, C. Chauvière & M. Fogli</i>	195
TM-2-2 Probabilistic seismic demand models and fragility estimates for reinforced concrete bridges with two-column bents <i>J. Zhong, P. Gardoni, D.V. Rosowsky & T. Haukaas</i>	197
TM-2-3 Probabilistic analysis of industrial accident damages using risk curve <i>S. Hanayasu, K. Sekine & K. Ohdo</i>	199
TM-2-4 The extremal index of a dependent stationary pulse load process <i>B. Bhattacharya</i>	201
TM-2-5 Probabilistic precipitation map by the extreme value model based on meteorological data <i>M. Shinoda & Y. Honjo</i>	203
Random vibration (2)	
TM-3-1 Sub-critical excitations for nonlinear hysteretic systems <i>S.K. Au</i>	207
TM-3-2 Protection from overturn of furniture and antique during earthquake excitation <i>S. Aoki, Y. Nakanishi, T. Nishimura, K. Tominaga, M. Inagaki, T. Otaka, M. Kanazawa, S. Kawaguchi & T. Furuta</i>	209
TM-3-3 Simulation of earthquake ground motion using wavelet multiresolution analysis and nonstationary Kanai-Tajimi model <i>G.G. Amiri & A. Bagheri</i>	211
TM-3-4 Random vibration of linear oscillators moving on rough beams <i>G. Muscolino, A. Palmeri & A. Sofi</i>	213

TM-3-5 Extension of spectral characteristics to complex-valued non-stationary random processes and applications in structural reliability <i>M. Barbato & J.P. Conte</i>	215
<i>Codified design and code calibration</i>	
TM-4-1 Reliability calibration of Chinese hydraulic gates design code SL74-95 <i>D.Q. Li & S.B. Wu</i>	219
TM-4-2 Probabilistic verification and optimization of structural durability <i>M. Holický</i>	221
TM-4-3 Code calibration allowing for reliability differentiation and production quality <i>M. Holický, J. Marková & H. Gulvanessian</i>	223
TM-4-4 Optimum seismic design contour maps <i>H.P. Hong</i>	225
TM-4-5 Combination coefficients for modal pushover analysis <i>P. Cacciola, P. Colajanni & B. Potenzone</i>	227
<i>OSI Risk assessment and management of geohazard</i>	
TM-5-1 Fully probabilistic analysis of liquefaction potential for performance-based earthquake engineering design <i>C.H. Juang, D.K. Li & B.G. Nielson</i>	231
TM-5-2 Rainfall-induced landslide risk analysis along mountain roads in central Taiwan <i>J. Ching, H.-C. Liao & T.-R. Chen</i>	233
TM-5-3 Early warning systems for large earthquakes: Classification of near-source and far-source stations by using the Bayesian model class selection <i>M. Yamada, T.H. Heaton & J.L. Beck</i>	235
TM-5-4 Effects of uncertainty on offshore platform due to wave and seismic forces <i>K. Kawano, Y. Kimura, S. Kidouchi & M. Simotamari</i>	237
TM-5-5 Random field models for irregular masonry structures <i>G. Falsone & M. Lombardo</i>	239
<i>OS14 Fuzzy analysis</i>	
TM-6-1 Identification of rock discontinuity sets using fuzzy spectral clustering of discontinuity orientations <i>R. Jimenez-Rodriguez</i>	243
TM-6-2 Research on intelligent fuzzy optimal and active control system of buildings with biaxial eccentricity <i>A. Tani, N. Kouzue, H. Kawamura & Y. Yamabe</i>	245
TM-6-3 Fuzzy structural analysis in view of numerical efficiency <i>M. Liebscher, M. Beer, B. Möller & W. Graf</i>	249
TM-6-4 Recognition of cracks on concrete structures using two-dimensional Gabor function <i>M. Hirokane, I. Hayashi, H. Furuta, H. Takiuchi & I. Nakajima</i>	251

TM-6-5 Fuzzy stochastic finite element analysis <i>J.-U. Sickert, B. Möller & W. Graf</i>	253
TA session	
<i>OS12 Computational stochastic mechanics (1)</i>	
TA-2-1 Quasi random numbers in stochastic finite element analysis – application to global sensitivity analysis <i>B. Sudret, G. Blatman & M. Berveiller</i>	257
TA-2-2 Support vector machine for efficient subset simulations: ² SMART method <i>F. Deheeger & M. Lemaire</i>	259
TA-2-3 Bayesian based reliability updating approach with application of support vector machine <i>Y. Cao, M. Noori, F.G. Yuan, T. Yokoi & A. Masuda</i>	261
TA-2-4 Fast Monte Carlo simulation for stochastic response analysis under stationary noise having a specified power spectrum <i>J. Ogawa & H. Tanaka</i>	263
TA-2-5 Importance sampling method based upon the Meyer theorem for stochastic systems driven by a generalized noise <i>H. Tanaka & N. Tanji</i>	265
TA-2-6 Reliability estimation by local polynomial chaos approximations <i>C. Proppe</i>	267
<i>Optimal inspection & Maintenance strategies (1)</i>	
TA-3-1 Optimizing spatial sampling of infrastructure condition inspection <i>R.G. Mishalani & L. Gong</i>	271
TA-3-2 Application of NDI detection quality on corrosion-fatigue inspections for steel bridges <i>H.Y. Chung & L. Manuel</i>	273
TA-3-3 Optimum inspection interval analysis for sewage sludge dryer <i>Y. Shumuta, A. Ozaki & Y. Suga</i>	275
TA-3-4 Spatial dependence of Receiver Operating Characteristic curves for risk based inspection of corroded structures: Application to on-pile wharf <i>F. Schoefs, A. Clément, J.B. Memet & A. Nouy</i>	277
TA-3-5 Maintenance and inspection strategies of essential components of ship propulsion plants based on their failure distributions <i>Y. Song & H. Shiihara</i>	279
<i>Reliability-based optimal design (1)</i>	
TA-4-1 Estimation of the design wave height for offshore structures transportation <i>J.L. Alamilla, D. Campos, C. Ortega, J.L. Morales & A. Soriano</i>	283
TA-4-2 Reliability-based seismic design of steel rigid-frame piers considering its geometric shapes <i>Y. Nomura, M. Kawatani & S. Kato</i>	285

TA-4-3 Application of reliability-based design method to circular arc slip failure of breakwaters <i>R. Ozaki & T. Nagao</i>	287
TA-4-4 Design method for caisson-type breakwaters covered with wave-dissipating blocks considering LCC during execution <i>T. Yoshioka & T. Nagao</i>	289
TA-4-5 Dependency of the bearing capacity of a shallow foundation on the reliability of the geotechnical subsoil model <i>G. Russo & S. Aversa</i>	291
TA-4-6 Efficient simulation-based optimization for optimal reliability problems <i>A.A. Taflanidis & J.L. Beck</i>	293
<i>OS3 Reliability analysis and design in geotechnical engineering (3)</i>	
TA-5-1 Design approaches of Eurocode 7 and their effect on the safety of shallow foundations <i>K. Lesny</i>	297
TA-5-2 Numerical analysis of shallow foundations – Influence of partial material factors according to EUROCODE 7-1 <i>P. Koudelka</i>	299
TA-5-3 Serviceability analysis: From single pile to pile group and pile system <i>Y. Xu, L.M. Zhang & S.M. Dasaka</i>	301
TA-5-4 From statistical interpretation of CPTs to reliability-based design of CFA piles <i>G. Vessia, C. Cherubini, M. Nardelli & A. Mandolini</i>	303
TA-5-5 Case study of reliability-based design for harbor structure using Rosenblueth method <i>H. Suzuki</i>	307
<i>Decision making</i>	
TA-6-1 Study on the broadcasting system of integrated disaster risks to common people <i>Y. Yoshioka & N. Sato</i>	311
TA-6-2 A method to determine the total risk exposure in large infrastructure projects <i>L. Olsson, R. Sturk, T. Hansson & J. Johansson</i>	313
TA-6-3 Assessment of earthquake insurance rates for the Turkish catastrophe insurance pool <i>A. Deniz & M.S. Yüçemen</i>	315
TA-6-4 Robustness of infrastructures subject to rare events <i>M. Schubert & M.H. Faber</i>	317
TA-6-5 Building risk management for earthquakes and fires <i>A. Kusaka, H. Ishida & K. Torisawa</i>	319
TA-6-6 Multi-attribute selection from alternative designs of a protective structure in the presence of epistemic uncertainty in the failure-to-protect probability <i>E.R. Vaidogas & K. Hayashi</i>	321

TE session

OS12 Computational stochastic mechanics (2)

TE-2-1 Stochastic nonlinear analysis of concrete structures – Part I: From simulation of experiment and parameter identification to reliability assessment 325
D. Novák, M. Vořechovský, D. Lehký, K. Bergmeister, R. Pukl & V. Červenka

TE-2-2 Stochastic nonlinear analysis of concrete structures – Part II: Application to fiber-reinforced concrete facade panels 327
Z. Keršner, D. Novák, L. Řoutil & J. Podroužek

TE-2-3 Stochastic nonlinear analysis of concrete structures – Part III: Application to bridges 329
A. Strauss, K. Bergmeister, R. Wendner, S. Hoffmann, U. Santa, D. Novák & R. Pukl

TE-2-4 Inverse statistical FEM analysis for the assessment of existing structures 331
A. Strauss, K. Bergmeister & D.M. Frangopol

TE-2-5 An interpolation of temperatures for heat insulator design using stochastic procedure 333
A. Sutoh, T. Mikami & T. Sato

TE-2-6 Stochastic analysis of actively controlled hysteretic structure with fuzzy-optimal control logic 335
T. Mochio

Optimal inspection & Maintenance Strategies (2)/Statistical Damage & Deterioration Modeling and Analysis (1)

TE-3-1 Risk analysis and reliability of repaired concrete quays 339
Y. Billard, O. Bernard, M. Lasne, B. Capra, F. Schoefs & J. Boéro

TE-3-2 Integrated maintenance optimization of LWRs based on PFM analysis 341
S. Yoshimura, K. Furuta, Y. Isobe, M. Sagisaka, M. Noda, T. Wada & H. Akiba

TE-3-3 Importance measures supporting risk-based management of flood defenses 343
F.A. Buijs, J.W. Hall & P.B. Sayers

TE-3-4 Probabilistic lifetime assessment of reinforced concrete structures under high-cycle fatigue 347
T. Pfister, Y.S. Petryna & F. Stangenberg

Reliability-based optimal design (2)

TE-4-1 Performance-based design of a Shape Memory Alloy base isolator 351
F. Casciati, L. Faravelli & K. Hamdaoui

TE-4-2 Optimal robust design via SMA dissipative devices 355
S. Casciati & K. Hamdaoui

TE-4-3 Reliability enhancement for dynamic positioning systems based on riser angle measurements 357
B.J. Leira & G. Gundersen

TE-4-4 Study on influence of shear stiffness of footboard on performance of scaffolds 359
K. Ohdo & S. Takanashi

TE-4-5 Socially optimized engineered safety: The Life Quality Index 361
N.C. Lind, M.D. Pandey & J.S. Nathwani

TE-4-6 Fatigue reliability-based assessment of welded joints applying consistent fracture mechanics formulations
T. Moan & E. Ayala-Uraga

363

OS18 Seismic risk (1)

TE-5-1 The application of time-predictable characteristic earthquake model for evaluation of design earthquake in Taiwan
Y.-W. Chang, W.-Y. Jean, K.-L. Wen & C.-H. Loh

367

TE-5-2 Correlation property for generation of waveforms
M. Ohbuchi, Y. Masuda & T. Takada

371

TE-5-3 Uncertainty analysis in fragility assessment of reinforced concrete frames designed for regions of low-to-moderate seismicity
O.C. Celik & B.R. Ellingwood

373

TE-5-4 Seismic design of woodframe residential structures for lifetime loss minimization: A Bayesian approach
S. Pei & J.W. van de Lind

375

TE-5-5 Effect of parameter uncertainty on the seismic fragility of retrofitted bridges
J.E. Padgett & R. DesRoches

377

TE-5-6 Seismic risk assessment and expected damage evaluation of railway viaduct
H. Yoshikawa, T. Ohtaki, H. Hattori, Y. Maeda, A. Noguchi & H. Okada

379

OS16 Reliability analysis

TE-6-1 Optimizing RC bridge inspection/repair schedules with pre-posterior decision making
Q. Qin & J.X. Wang

381

TE-6-2 An investigation on the limitations and applicability of the fourth-moment method for structural reliability assessment
Z.-H. Lu & Y.G. Zhao

385

TE-6-3 Investigation on the story mechanisms of frames using fishbone-shaped model
W.C. Pu & Y.G. Zhao

387

TE-6-4 Evaluation and Bayesian dynamic prediction of structural performance under freeze-thaw condition
W. Jian, L. Xila & T. Guangpu

389

TE-6-5 Application of third moment method to time-dependent reliability of R.C. structures under chlorination and carbonation
Y.G. Zhao & W.Q. Zhong

391

TE-6-6 First passage probability of structures under non-Gaussian stochastic behavior
H. Jun, K.X. Jian & M.X. Xuan

393

Keynote

Uncertainty quantification and adaptive prediction of underground contaminants
M. Shinozuka & S.R. Chaudhuri

395

FM session

Bayesian information processing and uncertainty analysis (1)

FM-2-1 Development of bridge component limit states using bayesian updating <i>B.G. Nielson & R. DesRoches</i>	399
FM-2-2 Comparison of Markov chain Monte Carlo simulation and a FORM-based approach for Bayesian updating of mechanical models <i>F. Perrin, B. Sudret, M. Pendola & E. de Rocquigny</i>	401
FM-2-3 Bayesian updating for site-specific attenuation relation with limited number of data <i>M. Wang & T. Takada</i>	403
FM-2-4 Handling uncertainties in structural fragility by means of the Bayesian bootstrap resampling <i>E.R. Vaidogas</i>	407
FM-2-5 Value of information analysis in earthquake risk management <i>Y.Y. Bayraktarli & M.H. Faber</i>	409

Performance-based engineering (1)

FM-4-1 Performance of non-seismically designed PR moment frames under earthquake loading <i>K. Kinali & B.R. Ellingwood</i>	413
FM-4-2 Methodology for Performance-Based Seismic Design using probabilistic system identification <i>J.W. van de Lindt, H. Liu & S. Pei</i>	415
FM-4-3 Damage assessment of steel moment frames by enhanced uncoupled modal response history analysis <i>Q. Li & B.R. Ellingwood</i>	417
FM-4-4 Damage evaluation on nonlinear SSI systems due to seismic forces <i>Y. Kimura, K. Kawano & Y. Nakamura</i>	419
FM-4-5 Probable loss model and spatial distribution of damage for probabilistic financial risk assessment of structures <i>B.A. Bradley, R.P. Dhakal & J.B. Mander</i>	423

Lifeline risk assessment

FM-5-1 Impact of infrastructure interdependency and spatial correlation of seismic intensities on performance assessment of a water distribution system <i>T. Adachi & B.R. Ellingwood</i>	427
FM-5-2 The scenario simulation of electric power systems during and after devastating earthquakes <i>G.-Y. Liu, Y.-J. Wang & C.-W. Liu</i>	429
FM-5-3 Reliability assessment of electrical power distribution systems under natural hazards <i>L. Dueñas-Osorio & B.R. Ellingwood</i>	431
FM-5-4 Performance of water lifeline network with damaged node structures under seismic risk <i>F. Mochizuki & T. Koike</i>	433
FM-5-5 Seismic reliability assessment of infrastructure systems based on fragility models <i>D. Straub & A. Der Kiureghian</i>	435

Reliability theory and applications (1)

FM-6-1 Reliability analysis of cable-stayed bridge considering lifecycle earthquakes and different phase characteristics <i>A. Furukawa, H. Otsuka, Y. Suzuki & T. Betsumiya</i>	439
FM-6-2 Recent developments in the area of probabilistic design of timber structures <i>J. Köhler & J.D. Sørensen</i>	441
FM-6-3 Fatigue reliability and effective turbulence models in wind farms <i>J.D. Sørensen, S. Frandsen & N.J. Tarp-Johansen</i>	443
FM-6-4 Reliability assessment of earth dams <i>Z. Mrabet, M.R. Elouini & K. Kheder</i>	445
FM-6-5 Assessment of traffic loads in car parks using renewal processes <i>M. Sýkora</i>	447

FA session

Bayesian information processing and uncertainty analysis (2)

FA-2-1 Probabilistic soil classification based on Cone Penetration Tests <i>B.-C. Jung, P. Gardoni & G. Biscontin</i>	451
FA-2-2 A versatile stochastic simulation method for Bayesian model updating and model class selection <i>J. Ching & Y.-C. Chen</i>	453
FA-2-3 Bayesian updating of predictions of long-term deflections of concrete bridges <i>S.G. Reid & T.B. Nguyen</i>	455
FA-2-4 Bayesian updating of the long-term creep strains in concrete containment vessels using a non intrusive stochastic finite element method <i>M. Berveiller, Y.L. Pape, B. Sudret & F. Perrin</i>	457
FA-2-5 Hierarchical Bayes methods involving dependent condition states <i>M.A. Maes & K.W. Breitung</i>	459
FA-2-6 Correlation Measures: Robustness and performance in simulations <i>S. Sriramula, D. Menon & A. Meher Prasad</i>	461

Statistical damage and deterioration modeling and analysis (2)

FA-3-1 Modeling statistical size effect in quasibrittle structures by computational stochastic fracture mechanics <i>M. Vořechovský</i>	465
FA-3-2 Characterization of pitting corrosion using spatial statistics <i>J. López De La Cruz & M.A. Gutiérrez</i>	467
FA-3-3 Probabilistic capacity models for corroding strands in Post-Tensioned bridges with voided tendons <i>R.G. Pillai, P. Gardoni, M. Hueste, K. Reinschmidt & D. Trejo</i>	469
FA-3-4 The asymptotic properties of strength and compliance of single-walled carbon nanotubes containing random defects <i>B. Bhattacharya & Q. Lu</i>	471

FA-3-5 Study of time dependent reliability of old man-made slopes <i>J. Zhang & W.H. Tang</i>	473
FA-3-6 Pitting corrosion – probabilistic modeling and its effect on the ultimate strength of steel plates subjected to uni-axial compression <i>T. Nakai & N. Yamamoto</i>	475
Performance-based engineering (2)	
FA-4-1 Drift demand of different structural systems subjected to near-fault ground motions <i>S.-H. Chao & C.-H. Loh</i>	481
FA-4-2 Study on seismic performance of timber structure in snowy region <i>T. Chiba, T. Tomabechi, T. Takahashi & T. Uematsu</i>	483
FA-4-3 Seismic hazard analysis for alternative measures of ground motion intensity employing stochastic simulation methods <i>F. Jalayer & P. Franchin</i>	485
FA-4-4 Global seismic reliability analysis of structures with FORM <i>S.D. Koduru & T. Haukaas</i>	489
FA-4-5 Influence of parameter uncertainties on the seismic performance of oscillators via SPO2IDA <i>D. Vamvatsikos</i>	481
OS18 Seismic risk (2)	
FA-5-1 Numerical assessment of damage state of segmented pipelines due to permanent ground deformation <i>V.G. Terzi, M.N. Alexoudi & T.N. Hatzigogos</i>	495
FA-5-2 Reliability-based seismic analysis of structures using Kanda function <i>S.H.C. Santos, L.E. Vaz & M.E.S. Albuquerque</i>	499
FA-5-3 Correlation of ground motion intensity parameters used for predicting structural and geotechnical response <i>J.W. Baker</i>	501
FA-5-4 Determination of maximum probable earthquakes in disaster reduction plans <i>C.-H. Yeh</i>	503
FA-5-5 Seismic vulnerability assessment of buildings functionally connected in university campus <i>Y. Hiraiwa & T. Takada</i>	505
FA-5-6 Extending the USGS National Seismic Hazard Maps and ShakeMaps to probabilistic building damage and risk maps <i>N. Luco & E. Karaca</i>	509
Reliability theory and applications (2)	
FA-6-1 Verifications of a novel structural health assessment technique <i>A. Haldar, R. Martinez-Flores & H. Katkhuda</i>	513
FA-6-2 Reliability-based optimization of an existing n -unit series system with dependent components and finite renewal times <i>A.E. Joanni & R. Rackwitz</i>	515

FA-6-3 Full probabilistic approach to seismic reliability assessment of RC frame structures <i>M. Bianchini, P.P. Diotallevi & L. Landi</i>	517
FA-6-4 Probabilistic estimation of fluctuations in the dynamic characteristics of a seismically isolated building <i>T. Saito & M. Shiraishi</i>	519
FA-6-5 Effect of variability of structural calculations on seismic safety <i>K. Motoi & J. Kanda</i>	521

FE session

Simulation methods

FE-2-1 Estimation of extreme response of dynamic structural systems subjected to stochastic loading by direct Monte Carlo simulation <i>A. Naess & O. Gaidai</i>	525
FE-2-2 Simulation of simply cross correlated random fields by series expansion methods <i>M. Vořechovský</i>	527
FE-2-3 Reliability-based analysis of strip footings using response surface methodology <i>D.S. Youssef, Abdel Massih & A.-H. Soubra</i>	529
FE-2-4 Adaptive response surface approach for reliability analysis using advanced meta-models <i>T. Most & C. Bucher</i>	533
FE-2-5 Simulation of Multi-dimensional non-Gaussian fields using Karhunen-Loève expansion <i>K.K. Phoon, S.T. Quek & L.B. Li</i>	535
FE-2-6 A stochastic model for earthquake ground motion with separable temporal and spectral nonstationarity <i>A. Der Kiureghian & S. Rezaeian</i>	537

Statistical damage and deterioration modeling and analysis (3)

FE-3-1 Stochastic analysis of delamination in fibre metal laminates using a spectral stochastic interface element <i>D. B. Chung, M.A. Gutiérrez & C.D. Autheur</i>	541
FE-3-2 Influence of spatial and temporal variability of the material properties on the assessment of a RC corroded bridge in marine environment <i>D. Breysse, S. Yotte & A. Povoa</i>	543
FE-3-3 Assessment updating of corrosion accounting uncertainties in modelling and NDT measurements <i>D. Breysse, F. Schoefs, M. Salta & S. Bonnet</i>	545
FE-3-4 Fatigue damage under combined high and low frequency Gaussian load processes considering a two-slope SN curve <i>Z. Gao & T. Moan</i>	547
FE-3-5 Modeling of uncertainties associated with structural deterioration <i>X.-X. Yuan & M.D. Pandey</i>	549

FE-3-6 Application of a time series based damage detection algorithm to the Taiwanese benchmark experiment <i>H. Noh, K.K. Nair, A.S. Kiremidjian & C.-H. Loh</i>	551
Performance-based engineering (3)	
FE-4-1 Partially compressive performances of orthotropic wood due to the grain angles <i>H. Tanahashi, H. Shimizu & Y. Suzuki</i>	553
FE-4-2 Performance-based design of a wind turbine under typhoon and earthquake loads <i>L.E.O. Garciano & T. Koike</i>	559
FE-4-3 Performance-based wind design for footbridges: Evaluation of pedestrian comfort <i>E. Sibilio & M. Ciampoli</i>	561
FE-4-4 Analysis of reliability for deep excavation engineering <i>F.K. Huang & G.S. Wang</i>	563
FE-4-5 Towards generalized fragility functions of RC frame structures containing URM infill walls <i>A. Hashemi & K.M. Mosalam</i>	565
FE-4-6 A methodology for determination of efficient earthquake bins for Performance Based Seismic Design <i>T. Trombetti, S. Silvestri, D. Malavolta & G. Gasparini</i>	569
OS18 Seismic risk (3)	
FE-5-1 Optimal strategy for upgrading existing non-conforming wooden houses <i>Y. Mori, T. Yamaguchi & H. Idota</i>	571
FE-5-2 Seismic hazard assessments by applying scenario earthquake model with variation of fault parameters <i>N. Hata, J. Kanda, K. Dan, M. Muto & J. Miyakoshi</i>	575
FE-5-3 The effects of portfolio manipulation on earthquake portfolio loss estimates <i>P. Bazzurro & J. Park</i>	577
FE-5-4 Modeling spatial correlation of ground motion Intensity Measures for regional seismic hazard and portfolio loss estimation <i>J. Park, P. Bazzurro & J. Baker</i>	579
FE-5-5 The influence of probabilistic loading and site-effects in the earthquake risk assessment of water system. The case of Duzce <i>M.N. Alexoudi, D.K. Manou & T.N. Hatzigogos</i>	581
FE-5-6 Seismic risk analysis of electric power transmission systems <i>K.D. Ptililakis, T.D. Xenos, K.G. Kakderi, M.N. Alexoudi & G.K. Theofilogiannakos</i>	583
System identification and statistical model assessment	
FE-6-1 Identification of restoring force characteristics by regulation method <i>O. Maruyama</i>	585

FE-6-2 Identifying stiffness distributions by direct influence measurements <i>S. Hoffmann, K. Bergmeister, A. Strauss & M. Preslmayr</i>	589
FE-6-3 Application of genetic algorithm and local search method to structural dynamic system identification <i>G.S. Wang & F.K. Huang</i>	591
FE-6-4 Bayesian model updating of higher-dimensional dynamic systems <i>S. H. Cheung & J.L. Beck</i>	593
FE-6-5 Identification of random material properties from monitoring of structures using stochastic chaos <i>F. Schoefs, H. Yáñez-Godoy & A. Nouy</i>	595
FE-6-6 Advanced numerical models – influence of partial material factors <i>P. Koudelka & T. Koudelka</i>	597
Author Index	599