

## Contents

**About the Authors** *xi*

**Preface** *xv*

**List of Abbreviations** *xvii*

|          |                                                      |           |
|----------|------------------------------------------------------|-----------|
| <b>1</b> | <b>Introduction</b>                                  | <i>1</i>  |
| 1.1      | Motivation and Introduction                          | <i>1</i>  |
| 1.2      | History of Automated Driving                         | <i>3</i>  |
| 1.3      | ADAS to Autonomous Driving                           | <i>11</i> |
| 1.4      | Autonomous Driving Architectures                     | <i>13</i> |
| 1.5      | Cybersecurity Considerations                         | <i>13</i> |
| 1.6      | Organization and Scope of the Book                   | <i>14</i> |
| 1.7      | Chapter Summary and Concluding Remarks               | <i>14</i> |
|          | References                                           | <i>15</i> |
| <b>2</b> | <b>Vehicle, Path, and Path Tracking Models</b>       | <i>19</i> |
| 2.1      | Tire Force Model                                     | <i>19</i> |
| 2.1.1    | Introduction                                         | <i>19</i> |
| 2.1.2    | Tire Forces/Moments and Slip                         | <i>20</i> |
| 2.1.3    | Longitudinal Tire Force Modeling                     | <i>23</i> |
| 2.1.4    | Lateral Tire Force Modeling                          | <i>24</i> |
| 2.1.5    | Self-aligning Moment Model                           | <i>28</i> |
| 2.1.6    | Coupling of Tire Forces                              | <i>29</i> |
| 2.2      | Vehicle Longitudinal Dynamics Model                  | <i>33</i> |
| 2.3      | Vehicle Lateral Dynamics Model                       | <i>36</i> |
| 2.3.1    | Geometry of Cornering                                | <i>36</i> |
| 2.3.2    | Single-Track Lateral Vehicle Model                   | <i>38</i> |
| 2.3.3    | Augmented Single-Track Lateral Vehicle Model         | <i>42</i> |
| 2.3.4    | Linearized Single Track Lateral Vehicle Model        | <i>42</i> |
| 2.4      | Path Model                                           | <i>45</i> |
| 2.5      | Pure Pursuit: Geometry-Based Low-Speed Path Tracking | <i>51</i> |
| 2.6      | Stanley Method for Path Tracking                     | <i>52</i> |
| 2.7      | Path Tracking in Reverse Driving and Parking         | <i>54</i> |
| 2.8      | Chapter Summary and Concluding Remarks               | <i>56</i> |
|          | References                                           | <i>56</i> |

|          |                                                                         |     |
|----------|-------------------------------------------------------------------------|-----|
| <b>3</b> | <b>Simulation, Experimentation, and Estimation Overview</b>             | 57  |
| 3.1      | Introduction to the Simulation-Based Development and Evaluation Process | 57  |
| 3.2      | Model-in-the-Loop Simulation                                            | 60  |
| 3.2.1    | Linear and Nonlinear Vehicle Simulation Models                          | 60  |
| 3.2.2    | Higher Fidelity Vehicle Simulation Models                               | 61  |
| 3.3      | Virtual Environments Used in Simulation                                 | 62  |
| 3.3.1    | Road Network Creation                                                   | 63  |
| 3.3.2    | Driving Environment Construction                                        | 65  |
| 3.3.3    | Capabilities                                                            | 68  |
| 3.4      | Hardware-in-the-Loop Simulation                                         | 72  |
| 3.5      | Experimental Vehicle Testbeds                                           | 74  |
| 3.5.1    | Unified Approach                                                        | 75  |
| 3.5.2    | Unified AV Functions and Sensors Library                                | 76  |
| 3.6      | Estimation                                                              | 78  |
| 3.6.1    | Estimation of the Effective Tire Radius                                 | 78  |
| 3.6.2    | Slip Slope Method for Road Friction Coefficient Estimation              | 79  |
| 3.6.3    | Results and Discussion                                                  | 82  |
| 3.7      | Chapter Summary and Concluding Remarks                                  | 87  |
|          | References                                                              | 87  |
| <b>4</b> | <b>Path Description and Generation</b>                                  | 91  |
| 4.1      | Introduction                                                            | 91  |
| 4.2      | Discrete Waypoint Representation                                        | 91  |
| 4.3      | Parametric Path Description                                             | 94  |
| 4.3.1    | Clothoids                                                               | 95  |
| 4.3.2    | Bezier Curves                                                           | 97  |
| 4.3.3    | Polynomial Spline Description                                           | 99  |
| 4.4      | Tracking Error Calculation                                              | 103 |
| 4.4.1    | Tracking Error Computation for a Discrete Waypoint Path Representation  | 103 |
| 4.4.2    | Tracking Error Computation for a Spline Path Representation             | 104 |
| 4.5      | Chapter Summary and Concluding Remarks                                  | 104 |
|          | References                                                              | 105 |
| <b>5</b> | <b>Collision Free Path Planning</b>                                     | 107 |
| 5.1      | Introduction                                                            | 107 |
| 5.2      | Elastic Band Method                                                     | 111 |
| 5.2.1    | Path Structure                                                          | 111 |
| 5.2.2    | Calculation of Forces                                                   | 111 |
| 5.2.3    | Reaching Equilibrium Point                                              | 114 |
| 5.2.4    | Selected Scenarios                                                      | 115 |
| 5.2.5    | Results                                                                 | 116 |
| 5.3      | Path Planning with Minimum Curvature Variation                          | 123 |
| 5.3.1    | Optimization Based on $G^2$ -Quintic Splines Path Description           | 123 |
| 5.3.2    | Reduction of Computation Cost Using Lookup Tables                       | 125 |
| 5.3.3    | Geometry-Based Collision-Free Target Points Generation                  | 128 |
| 5.3.4    | Simulation Results                                                      | 132 |
| 5.4      | Model-Based Trajectory Planning                                         | 134 |

|          |                                                                            |     |
|----------|----------------------------------------------------------------------------|-----|
| 5.4.1    | Problem Formulation                                                        | 134 |
| 5.4.2    | Parameterized Vehicle Control                                              | 136 |
| 5.4.3    | Constrained Optimization on Curvature Control                              | 137 |
| 5.4.4    | Sampling of the Longitudinal Movements                                     | 141 |
| 5.4.5    | Trajectory Evaluation and Selection                                        | 143 |
| 5.4.6    | Integration of Road Friction Coefficient Estimation for Safety Enhancement | 145 |
| 5.4.7    | Simulation Results in Complex Scenarios                                    | 148 |
| 5.5      | Chapter Summary and Concluding Remarks                                     | 154 |
|          | References                                                                 | 154 |
| <b>6</b> | <b>Path-Tracking Model Regulation</b>                                      | 159 |
| 6.1      | Introduction                                                               | 159 |
| 6.2      | DOB Design and Frequency Response Analysis                                 | 160 |
| 6.2.1    | DOB Derivation and Loop Structure                                          | 160 |
| 6.2.2    | Application Examples                                                       | 162 |
| 6.2.3    | Disturbance Rejection Comparison                                           | 171 |
| 6.3      | Q Filter Design                                                            | 171 |
| 6.4      | Time Delay Performance                                                     | 172 |
| 6.5      | Chapter Summary and Concluding Remarks                                     | 175 |
|          | References                                                                 | 175 |
| <b>7</b> | <b>Robust Path Tracking Control</b>                                        | 177 |
| 7.1      | Introduction                                                               | 177 |
| 7.2      | Model Predictive Control for Path Following                                | 178 |
| 7.2.1    | Formulation of Linear Adaptive MPC Problem                                 | 178 |
| 7.2.2    | Estimation of Lateral Velocity                                             | 180 |
| 7.2.3    | Experimental Results                                                       | 182 |
| 7.3      | Design Methodology for Robust Gain-Scheduling Law                          | 185 |
| 7.3.1    | Problem Formulation                                                        | 185 |
| 7.3.2    | Design via Optimization in Linear Matrix Inequalities Form                 | 186 |
| 7.3.3    | Parameter-Space Gain-Scheduling Methodology                                | 188 |
| 7.4      | Robust Gain-Scheduling Application to Path-Tracking Control                | 193 |
| 7.4.1    | Car Steering Model and Parameter Uncertainty                               | 193 |
| 7.4.2    | Controller Structure and Design Parameters                                 | 195 |
| 7.4.3    | Application of Parameter-Space Gain-Scheduling                             | 197 |
| 7.4.4    | Comparative Study of LMI Design                                            | 200 |
| 7.4.5    | Experimental Results and Discussions                                       | 202 |
| 7.5      | Add-on Vehicle Stability Control for Autonomous Driving                    | 206 |
| 7.5.1    | Direct Yaw Moment Control Strategies                                       | 207 |
| 7.5.2    | Direct Yaw Moment Distribution via Differential Braking                    | 211 |
| 7.5.3    | Simulation Results and Discussion                                          | 213 |
| 7.6      | Chapter Summary and Concluding Remarks                                     | 216 |
|          | References                                                                 | 216 |

**8**      **Summary and Conclusions** 221

8.1      Summary 221

8.2      Conclusions 223

**Index** 225