

Contents

Preface

ix

1	Conduction Heat Transfer and Formulation	1
1.1	Introduction	1
1.2	Modelling of Heat Conduction	3
1.2.1	Derivation of the governing equation	3
1.2.2	Initial and boundary conditions	5
1.2.3	Interface conditions	6
1.2.4	Initial, boundary and interface conditions in a practical example	7
1.3	Variational Formulation	8
1.3.1	Steady problems	8
1.3.2	Multi-material problems	11
1.3.3	Transient problems	13
1.4	The Galerkin Approximate Solution Method	13
1.4.1	Optimality of the Galerkin approximation	15
1.4.2	Convergence of the Galerkin approximation	17
1.5	Finite Element Approximating Functions in One Dimension	17
1.5.1	The linear element	18
1.5.2	The quadratic element	20
1.6	Finite Element Approximating Functions in Two Dimensions	21
1.6.1	The linear element	22
1.6.2	The quadratic element	25
1.6.3	The quadratic serendipity element	27
1.7	A Practical Implementation of the Galerkin Finite Element Method	29
1.8	Further Observations	30
	Additional Reading	31
2	Linear Steady-state Problems	33
2.1	Introduction	33
2.2	A One-dimensional Problem Solved Using a Single Element	34
2.2.1	The linear element	34
2.2.2	The quadratic element	38
2.2.3	The use of numerical integration	41
2.3	A One-dimensional Problem Solved Using an Assembly of Elements	42

2.3.1 The use of linear elements	42
2.3.2 The use of quadratic elements	47
2.3.3 The use of numerical integration	50
2.4 A Two-dimensional Problem Solved Using a Single Element	50
2.4.1 The four-noded rectangular element	50
2.4.2 The use of numerical integration	57
2.4.3 The general four-noded isoparametric element	58
2.4.4 The validity of the mapping	63
2.4.5 The eight-noded rectangular element	63
2.4.6 The general eight-noded isoparametric element	67
2.4.7 The validity of the mapping	73
2.5 A Two-dimensional Problem Solved Using an Assembly of Elements	73
2.5.1 The use of four-noded rectangular elements	73
2.5.2 The use of general eight-noded isoparametric elements	76
Additional Reading	80
3 Time Stepping Methods for Heat Transfer	81
3.1 Introduction	81
3.2 Finite Difference Approximations	82
3.3 Stability	87
3.3.1 Fourier stability analysis	88
3.3.2 Modal decomposition analysis	90
3.4 Further Differencing Schemes	92
3.5 Finite Element Time Stepping	93
3.5.1 Weighted residual method	93
3.5.2 Least squares method	95
3.6 Further Finite Element Schemes	96
References	97
4 Non-linear Heat Conduction Analysis	99
4.1 Introduction	99
4.2 Application of Galerkin's Method to Non-linear Transient Heat Conduction Problems	99
4.2.1 Governing equation with initial and boundary conditions	99
4.2.2 Galerkin's method	100
4.2.3 One-dimensional non-linear steady-state problem	101
4.2.4 One-dimensional transient state problem	103
4.3 Examples	107
References	121
5 Phase Change Problems—Solidification and Melting	123
5.1 Introduction	123
5.2 Statement of the Problem	124
5.3 Numerical Methods for Modelling Phase Change	125
5.4 Bench-mark Example	129

5.5	Examples	130
5.5.1	Ingot casting	131
5.5.2	Ingot casting with mould	137
5.5.3	Continuous casting	142
5.5.4	Aluminium casting	151
5.6	Adaptive Remeshing in Solidification Problems	153
5.7	Other Applications	159
	References	159

6 Convective Heat Transfer 162

6.1	Introduction	162
6.2	Basic Equations	162
6.3	Galerkin Methods for Steady Convection–Diffusion Problems	164
6.4	Upwind Finite Elements in one Dimension	167
6.4.1	Petrov–Galerkin formulation using special weighting functions	168
6.4.2	Upwind schemes based on a modified quadrature rule	170
6.4.3	Upwind schemes based on the artificial diffusion interpretation	171
6.4.4	Upwind method extended to multi dimensions	171
6.5	Taylor–Galerkin Method For Transient Convection–Diffusion Problems	172
6.6	Velocity–Pressure–Temperature Formulation (Mixed Interpolation Approach) for Convective Heat Transfer Problems	174
6.7	Examples of Heat Transfer in a Fluid Flowing Between Parallel Planes	177
6.8	Effect of Convection on Melting and Solidification	184
6.9	Mould Filling in Castings	186
	References	188

7 Further Developments 191

7.1	Introduction	191
7.1.1	Thermal stress development	191
7.1.2	Heat and moisture transfer	192
7.1.3	Shrinkage stress development	194
7.2	Thermal Stress Developments	195
7.2.1	Elastic stress/strain relationships	195
7.2.2	Elasto/viscoplastic rheological model	196
7.2.3	Plastic stress/strain relationships	198
7.2.4	Calculation of elasto/viscoplastic strain	199
7.2.5	The yield criterion used	200
7.2.6	Finite element solution procedure	202
7.2.7	Connecting heat transfer theory and stress analysis	205
7.2.8	Applications	206
7.3	Heat and Moisture Transfer	213
7.3.1	Potentials for transfer and transfer fluxes	213
7.3.2	Conservation equations	216
7.3.3	Boundary conditions	223
7.3.4	Finite element formulation	225
7.3.5	Applications	227

7.4	Shrinkage Stress Development	249
7.4.1	Elastic stress/strain relationships	250
7.4.2	Plastic yield criterion	252
7.4.3	Viscoelastic behaviour	253
7.4.4	Finite element formulation	256
7.4.5	The selection of time step size for heat and mass transfer and viscoelastic stress analysis	259
7.4.6	Applications	259
	References	268
	Nomenclature	271
	Index	275