

Contents

Preface	vi
Notation	xi
Chapter 1. Elliptic Partial Differential Equations	1
1.1 Introduction	1
1.2 Green's Formula	1
1.3 Sobolev Spaces	2
1.4 Linear Elliptic PDE of Order 2	3
1.5 Numerical Solutions of Linear Elliptic Equations of Order 2	6
1.6 Other Elliptic Equations	10
1.7 Continuous Dependence on the Boundary	14
Chapter 2. Problem Statement	16
2.1 Introduction	16
2.2 Definition	16
2.3 Examples	16
2.4 Principles of Solution	24
2.5 Future of Optimal Design Applications in Industry	26
2.6 Historical Background and References	28
Chapter 3. Existence of Solutions	30
3.1 Introduction	30
3.2 Dirichlet Conditions	30
3.3 Neumann Boundary Conditions	40
3.4 Conclusion	43
Chapter 4. Optimization Methods	45
4.1 Orientation	45
4.2 Problem Statement	45
4.3 Gradients	47
4.4 Method of Steepest Descent	48
4.5 Newton Method	52

4.6 Conjugate Gradient Method	54
4.7 Optimization with Equality Constraints	57
4.8 Optimization with Inequality Constraints	59
Chapter 5. Design Problems Solved by Standard Optimal Control Theory	68
5.1 Introduction	68
5.2 Optimization of a Thin Wing	68
5.3 Optimization of an Almost Straight Nozzle	73
5.4 Thickness Optimization Problem	77
Chapter 6. Optimality Conditions	81
6.1 Introduction	81
6.2 Distributed Observation on a Fixed Domain	81
6.3 Other Cases with Linear PDE	90
Chapter 7. Discretization with Finite Elements	99
7.1 Introduction	99
7.2 Neumann Problem	99
7.3 Dirichlet Conditions	112
7.4 Other Problems	116
7.5 Convergence	119
Chapter 8. Other Methods	121
8.1 Introduction	121
8.2 Method of Mappings	121
8.3 Finite Difference Discretization	125
8.4 Method of Characteristic Functions	133
8.5 Discretization by the Boundary Element Method	138
Chapter 9. Two Industrial Examples	143
9.1 Introduction	143
9.2 Optimization of Electromagnets	144
9.3 Optimization of Airfoils	154
9.4 Conclusion	161
References	163
Index	167