

# Contents

|          |                                                      |            |
|----------|------------------------------------------------------|------------|
| <b>1</b> | <b>STRESS</b>                                        | <b>1</b>   |
| 1.1      | Introduction                                         | 1          |
| 1.2      | Normal Stress Under Axial Loading                    | 2          |
| 1.3      | Direct Shear Stress                                  | 8          |
| 1.4      | Bearing Stress                                       | 14         |
| 1.5      | Stresses on Inclined Sections                        | 18         |
| 1.6      | Equality of Shear Stresses on Perpendicular Planes   | 20         |
|          | Problems                                             | 23         |
| <b>2</b> | <b>STRAIN</b>                                        | <b>31</b>  |
| 2.1      | Displacement, Deformation, and the Concept of Strain | 31         |
| 2.2      | Normal Strain                                        | 32         |
| 2.3      | Shear Strain                                         | 37         |
| 2.4      | Thermal Strain                                       | 41         |
|          | Problems                                             | 44         |
| <b>3</b> | <b>MECHANICAL PROPERTIES OF MATERIALS</b>            | <b>49</b>  |
| 3.1      | The Tension Test                                     | 49         |
| 3.2      | The Stress-Strain Diagram                            | 52         |
| 3.3      | Hooke's Law                                          | 61         |
| 3.4      | Poisson's Ratio                                      | 62         |
|          | Problems                                             | 71         |
| <b>4</b> | <b>DESIGN CONCEPTS</b>                               | <b>77</b>  |
| 4.1      | Introduction                                         | 77         |
| 4.2      | Types of Loads                                       | 78         |
| 4.3      | Safety                                               | 79         |
| 4.4      | Allowable Stress Design                              | 80         |
| 4.5      | Load and Resistance Factor Design                    | 87         |
|          | Problems                                             | 92         |
| <b>5</b> | <b>AXIAL DEFORMATION</b>                             | <b>97</b>  |
| 5.1      | Introduction                                         | 97         |
| 5.2      | Saint-Venant's Principle                             | 98         |
| 5.3      | Deformations in Axially Loaded Bars                  | 100        |
| 5.4      | Deformations in a System of Axially Loaded Bars      | 107        |
| 5.5      | Statically Indeterminate Axially Loaded Members      | 114        |
| 5.6      | Thermal Effects on Axial Deformation                 | 125        |
| 5.7      | Stress Concentrations                                | 132        |
|          | Problems                                             | 137        |
| <b>6</b> | <b>TORSION</b>                                       | <b>149</b> |
| 6.1      | Introduction                                         | 149        |
| 6.2      | Torsional Shear Strain                               | 151        |
| 6.3      | Torsional Shear Stress                               | 152        |
| 6.4      | Stresses on Oblique Planes                           | 154        |

|             |                                                                   |     |
|-------------|-------------------------------------------------------------------|-----|
| <b>6.5</b>  | Torsional Deformations                                            | 156 |
| <b>6.6</b>  | Torsion Sign Conventions                                          | 158 |
| <b>6.7</b>  | Gears in Torsion Assemblies                                       | 167 |
| <b>6.8</b>  | Power Transmission                                                | 172 |
| <b>6.9</b>  | Statically Indeterminate Torsion Members                          | 176 |
| <b>6.10</b> | Stress Concentrations in Circular Shafts Under Torsional Loadings | 188 |
| <b>6.11</b> | Torsion of Noncircular Sections                                   | 191 |
| <b>6.12</b> | Torsion of Thin-Walled Tubes: Shear Flow                          | 195 |
|             | Problems                                                          | 198 |

## 7 EQUILIBRIUM OF BEAMS 209

|            |                                                              |     |
|------------|--------------------------------------------------------------|-----|
| <b>7.1</b> | Introduction                                                 | 209 |
| <b>7.2</b> | Shear and Moment in Beams                                    | 211 |
| <b>7.3</b> | Graphical Method for Constructing Shear and Moment Diagrams  | 222 |
| <b>7.4</b> | Discontinuity Functions to Represent Load, Shear, and Moment | 239 |
|            | Problems                                                     | 250 |

## 8 BENDING 257

|             |                                               |     |
|-------------|-----------------------------------------------|-----|
| <b>8.1</b>  | Introduction                                  | 257 |
| <b>8.2</b>  | Flexural Strains                              | 259 |
| <b>8.3</b>  | Normal Stresses in Beams                      | 260 |
| <b>8.4</b>  | Analysis of Bending Stresses in Beams         | 272 |
| <b>8.5</b>  | Introductory Beam Design for Strength         | 279 |
| <b>8.6</b>  | Flexural Stresses in Beams of Two Materials   | 284 |
| <b>8.7</b>  | Bending Due to an Eccentric Axial Load        | 295 |
| <b>8.8</b>  | Unsymmetric Bending                           | 301 |
| <b>8.9</b>  | Stress Concentrations Under Flexural Loadings | 311 |
| <b>8.10</b> | Bending of Curved Bars                        | 314 |
|             | Problems                                      | 322 |

## 9 SHEAR STRESS IN BEAMS 339

|            |                                               |     |
|------------|-----------------------------------------------|-----|
| <b>9.1</b> | Introduction                                  | 339 |
| <b>9.2</b> | Resultant Forces Produced by Bending Stresses | 339 |
| <b>9.3</b> | The Shear Stress Formula                      | 344 |
| <b>9.4</b> | The First Moment of Area, $Q$                 | 350 |

|             |                                                      |     |
|-------------|------------------------------------------------------|-----|
| <b>9.5</b>  | Shear Stresses in Beams of Rectangular Cross Section | 352 |
| <b>9.6</b>  | Shear Stresses in Beams of Circular Cross Section    | 357 |
| <b>9.7</b>  | Shear Stresses in Beams of Triangular Cross Section  | 359 |
| <b>9.8</b>  | Shear Stresses in Webs of Flanged Beams              | 363 |
| <b>9.9</b>  | Shear Flow in Built-Up Members                       | 366 |
| <b>9.10</b> | Shear Stress and Shear Flow in Thin-Walled Members   | 375 |
| <b>9.11</b> | Shear Centers of Thin-Walled Open Sections           | 393 |
|             | Problems                                             | 405 |

## 10 BEAM DEFLECTIONS 421

|             |                                                                         |     |
|-------------|-------------------------------------------------------------------------|-----|
| <b>10.1</b> | Introduction                                                            | 421 |
| <b>10.2</b> | Moment-Curvature Relationship                                           | 422 |
| <b>10.3</b> | The Differential Equation of the Elastic Curve                          | 422 |
| <b>10.4</b> | Determining Deflections by Integration of a Moment Equation             | 426 |
| <b>10.5</b> | Determining Deflections by Integration of Shear-Force or Load Equations | 438 |
| <b>10.6</b> | Determining Deflections by Using Discontinuity Functions                | 441 |
| <b>10.7</b> | Determining Deflections by the Method of Superposition                  | 448 |
| <b>10.8</b> | Determining Deflections by Using Moment Area Method                     | 464 |
| <b>10.9</b> | Determining Deflections by Using Conjugate Beam Method                  | 466 |
|             | Problems                                                                | 470 |

## 11 STATICALLY INDETERMINATE BEAMS 483

|             |                                                                   |     |
|-------------|-------------------------------------------------------------------|-----|
| <b>11.1</b> | Introduction                                                      | 483 |
| <b>11.2</b> | Types of Statically Indeterminate Beams                           | 483 |
| <b>11.3</b> | The Integration Method                                            | 485 |
| <b>11.4</b> | Use of Discontinuity Functions for Statically Indeterminate Beams | 491 |
| <b>11.5</b> | The Superposition Method                                          | 496 |
|             | Problems                                                          | 509 |

## 12 STRESS TRANSFORMATIONS 519

- 12.1 Introduction 519
- 12.2 Stress at a General Point in an Arbitrarily Loaded Body 519
- 12.3 Equilibrium of the Stress Element 522
- 12.4 Plane Stress 523
- 12.5 Generating the Stress Element 524
- 12.6 Equilibrium Method for Plane Stress Transformations 527
- 12.7 General Equations of Plane Stress Transformation 530
- 12.8 Principal Stresses and Maximum Shear Stress 536
- 12.9 Presentation of Stress Transformation Results 543
- 12.10 Mohr's Circle for Plane Stress 550
- 12.11 General State of Stress at a Point 566
- Problems 573

## 13 STRAIN TRANSFORMATIONS 587

- 13.1 Introduction 587
- 13.2 Plane Strain 588
- 13.3 Transformation Equations for Plane Strain 589
- 13.4 Principal Strains and Maximum Shearing Strain 593
- 13.5 Presentation of Strain Transformation Results 594
- 13.6 Mohr's Circle for Plane Strain 598
- 13.7 Strain Measurement and Strain Rosettes 600
- Problems 606

## 14 PRESSURE VESSELS 609

- 14.1 Introduction 609
- 14.2 Thin-Walled Spherical Pressure Vessels 610
- 14.3 Thin-Walled Cylindrical Pressure Vessels 613
- 14.4 Strains in Thin-Walled Pressure Vessels 617
- 14.5 Stresses in Thick-Walled Cylinders 619
- 14.6 Deformations in Thick-Walled Cylinders 627
- 14.7 Interference Fits 630
- Problems 636

## 15 COMBINED LOADS 641

- 15.1 Introduction 641
- 15.2 Combined Axial and Torsional Loads 641
- 15.3 Principal Stresses in a Flexural Member 644
- 15.4 General Combined Loadings 653
- 15.5 Theories of Failure 669
- Problems 679

## 16 COLUMNS 691

- 16.1 Introduction 691
- 16.2 Buckling of Pin-Ended Columns 694
- 16.3 The Effect of End Conditions on Column Buckling 702
- 16.4 The Secant Formula 712
- 16.5 Empirical Column Formulas—Centric Loading 717
- 16.6 Eccentrically Loaded Columns 725
- Problems 733

## 17 ENERGY METHODS 743

- 17.1 Introduction 743
- 17.2 Work and Strain Energy 744
- 17.3 Elastic Strain Energy for Axial Deformation 748
- 17.4 Elastic Strain Energy for Torsional Deformation 750
- 17.5 Elastic Strain Energy for Flexural Deformation 752
- 17.6 Impact Loading 756
- 17.7 Work-Energy Method for Single Loads 770
- 17.8 Method of Virtual Work 773
- 17.9 Deflections of Trusses by the Virtual-Work Method 778
- 17.10 Deflections of Beams by the Virtual-Work Method 786
- 17.11 Castigliano's Second Theorem 795
- 17.12 Calculating Deflections of Trusses by Castigliano's Theorem 797
- 17.13 Calculating Deflections of Beams by Castigliano's Theorem 803
- Problems 809

**APPENDIX A Geometric Properties of an Area 823**

**A.1 Centroid of an Area 823**

**A.2 Moment of Inertia for an Area 826**

**A.3 Product of Inertia for an Area 830**

**A.4 Principal Moments of Inertia 833**

**A.5 Mohr's Circle for Principal Moments of Inertia 837**

**APPENDIX B Geometric Properties of Structural Steel Shapes 841**

**APPENDIX C Table of Beam Slopes and Deflections 847**

**APPENDIX D Average Properties of Selected Materials 851**

**APPENDIX E Generalized Hooke's Law for Isotropic and Orthotropic Materials 855**

**E.1 Generalized Hooke's Law for Isotropic Materials 855**

**E.2 Generalized Hooke's Law for Orthotropic Materials 872**

**APPENDIX F Fundamental Mechanics of Materials Equations 877**

**ANSWERS TO ODD NUMBERED PROBLEMS (AVAILABLE ONLINE)**

**INDEX I-1**