

Contents

Preface *xi*

About the Authors *xiii*

Introduction *1*

1 Kinematic Models for Mobile Robots *5*

1.1 Introduction *5*

1.2 Vehicles with Front-Wheel Steering *5*

1.3 Vehicles with Differential-Drive Steering *8*

Exercises *11*

References *12*

2 Mobile Robot Control *13*

2.1 Introduction *13*

2.2 Front-Wheel Steered Vehicle, Heading Control *13*

2.3 Front-Wheel Steered Vehicle, Speed Control *22*

2.4 Heading and Speed Control for the Differential-Drive Robot *23*

2.5 Reference Trajectory and Incremental Control, Front-Wheel Steered Robot *26*

2.6 Heading Control of Front-Wheel Steered Robot Using the Nonlinear Model *31*

2.7 Computed Control for Heading and Velocity, Front-Wheel Steered Robot *34*

2.8 Heading Control of Differential-Drive Robot Using the Nonlinear Model *36*

2.9 Computed Control for Heading and Velocity, Differential-Drive Robot *37*

2.10 Steering Control Along a Path Using a Local Coordinate Frame *38*

2.11 Optimal Steering of Front-Wheel Steered Vehicle *49*

2.12 Optimal Steering of Front-Wheel Steered Vehicle, Free Final Heading Angle *67*

Exercises	68
References	69

3 Robot Attitude 71

3.1	Introduction 71
3.2	Definition of Yaw, Pitch, and Roll 71
3.3	Rotation Matrix for Yaw 72
3.4	Rotation Matrix for Pitch 74
3.5	Rotation Matrix for Roll 75
3.6	General Rotation Matrix 77
3.7	Homogeneous Transformation 78
3.8	Rotating a Vector 82
	Exercises 83
	References 84

4 Robot Navigation 85

4.1	Introduction 85
4.2	Coordinate Systems 85
4.3	Earth-Centered Earth-Fixed Coordinate System 85
4.4	Associated Coordinate Systems 88
4.5	Universal Transverse Mercator Coordinate System 91
4.6	Global Positioning System 93
4.7	Computing Receiver Location Using GPS, Numerical Methods 97
4.7.1	Computing Receiver Location Using GPS via Newton's Method 97
4.7.2	Computing Receiver Location Using GPS via Minimization of a Performance Index 105
4.8	Array of GPS Antennas 111
4.9	Gimbaled Inertial Navigation Systems 114
4.10	Strap-Down Inertial Navigation Systems 118
4.11	Dead Reckoning or Deduced Reckoning 123
4.12	Inclinometer/Compass 125
	Exercises 127
	References 131

5 Application of Kalman Filtering 133

5.1	Introduction 133
5.2	Estimating a Fixed Quantity Using Batch Processing 133
5.3	Estimating a Fixed Quantity Using Recursive Processing 134
5.4	Estimating the State of a Dynamic System Recursively 139
5.5	Estimating the State of a Nonlinear System via the Extended Kalman Filter 150
	Exercises 165
	References 169

6	Remote Sensing	171
6.1	Introduction	171
6.2	Camera-Type Sensors	171
6.3	Stereo Vision	181
6.4	Radar Sensing: Synthetic Aperture Radar	185
6.5	Pointing of Range Sensor at Detected Object	190
6.6	Detection Sensor in Scanning Mode	195
	Exercises	199
	References	200
7	Target Tracking Including Multiple Targets with Multiple Sensors	203
7.1	Introduction	203
7.2	Regions of Confidence for Sensors	203
7.3	Model of Target Location	211
7.4	Inventory of Detected Targets	215
	Exercises	220
	References	221
8	Obstacle Mapping and Its Application to Robot Navigation	223
8.1	Introduction	223
8.2	Sensors for Obstacle Detection and Geo-Registration	223
8.3	Dead Reckoning Navigation	225
8.4	Use of Previously Detected Obstacles for Navigation	229
8.5	Simultaneous Corrections of Coordinates of Detected Obstacles and of the Robot	233
	Exercises	236
	References	237
9	Operating a Robotic Manipulator	239
9.1	Introduction	239
9.2	Forward Kinematic Equations	239
9.3	Path Specification in Joint Space	242
9.4	Inverse Kinematic Equations	242
9.5	Path Specification in Cartesian Space	248
9.6	Velocity Relationships	249
9.7	Forces and Torques	255
	Exercises	261
	References	262
10	Remote Sensing via UAVs	263
10.1	Introduction	263
10.2	Mounting of Sensors	263

10.3	Resolution of Sensors	264
10.4	Precision of Vehicle Instrumentation	264
10.5	Overall Geo-Registration Precision	265
	Exercise	267
	References	267
11	Dynamics Modeling of AUVs	269
11.1	Introduction	269
11.2	Motivation	269
11.3	Full Dynamic Model	270
11.4	Hydrodynamic Model	273
11.5	Reduced-Order Longitudinal Dynamics	274
11.6	Computation of Steady Gliding Path in the Longitudinal Plane	276
11.7	Scaling Analysis	279
11.8	Spiraling Dynamics	281
11.9	Computation of Spiral Path	286
	Exercises	288
	References	289
12	Control of AUVs	291
12.1	Introduction	291
12.2	Longitudinal Gliding Stabilization	291
12.2.1	Longitudinal Dynamic Model Reduction	292
12.2.2	Passivity-Based Controller Design	295
12.2.3	Simulation Results	297
12.3	Yaw Angle Regulation	298
12.3.1	Problem Statement	298
12.3.2	Sliding Mode Controller Design	300
12.3.3	Simulation Results	303
12.4	Spiral Path Tracking	307
12.4.1	Steady Spiral and Its Differential Geometric Parameters	307
12.4.2	Two Degree-of-Freedom Control Design	310
12.4.3	Simulation Results	314
	Exercises	321
	References	322
Appendix A	Demonstrations of Undergraduate Student Robotic Projects	323
Index	327	