

Contents

Preface

xi

PART 1

TRANSPORT PROCESSES: MOMENTUM, HEAT, AND MASS

Chapter 1	Introduction to Engineering Principles and Units	3
1.1	Classification of Transport Processes and Separation Processes (Unit Operations)	3
1.2	SI System of Basic Units Used in This Text and Other Systems	5
1.3	Methods of Expressing Temperatures and Compositions	7
1.4	Gas Laws and Vapor Pressure	9
1.5	Conservation of Mass and Material Balances	12
1.6	Energy and Heat Units	16
1.7	Conservation of Energy and Heat Balances	22
1.8	Numerical Methods for Integration	26
Chapter 2	Principles of Momentum Transfer and Overall Balances	34
2.1	Introduction	34
2.2	Fluid Statics	35
2.3	General Molecular Transport Equation for Momentum, Heat, and Mass Transfer	43
2.4	Viscosity of Fluids	47
2.5	Types of Fluid Flow and Reynolds Number	51
2.6	Overall Mass Balance and Continuity Equation	54
2.7	Overall Energy Balance	60
2.8	Overall Momentum Balance	74
2.9	Shell Momentum Balance and Velocity Profile in Laminar Flow	83
2.10	Design Equations for Laminar and Turbulent Flow in Pipes	88
2.11	Compressible Flow of Gases	107

Chapter 3 Principles of Momentum Transfer and Applications	121
3.1 Flow Past Immersed Objects and Packed and Fluidized Beds	121
3.2 Measurement of Flow of Fluids	136
3.3 Pumps and Gas-Moving Equipment	144
3.4 Agitation and Mixing of Fluids and Power Requirements	154
3.5 Non-Newtonian Fluids	169
3.6 Differential Equations of Continuity	183
3.7 Differential Equations of Momentum Transfer or Motion	188
3.8 Use of Differential Equations of Continuity and Motion	193
3.9 Other Methods for Solution of Differential Equations of Motion	202
3.10 Boundary-Layer Flow and Turbulence	209
3.11 Dimensional Analysis in Momentum Transfer	221
Chapter 4 Principles of Steady-State Heat Transfer	235
4.1 Introduction and Mechanisms of Heat Transfer	235
4.2 Conduction Heat Transfer	241
4.3 Conduction Through Solids in Series	244
4.4 Steady-State Conduction and Shape Factors	256
4.5 Forced Convection Heat Transfer Inside Pipes	259
4.6 Heat Transfer Outside Various Geometries in Forced Convection	271
4.7 Natural Convection Heat Transfer	277
4.8 Boiling and Condensation	283
4.9 Heat Exchangers	291
4.10 Introduction to Radiation Heat Transfer	301
4.11 Advanced Radiation Heat-Transfer Principles	307
4.12 Heat Transfer of Non-Newtonian Fluids	323
4.13 Special Heat-Transfer Coefficients	326
4.14 Dimensional Analysis in Heat Transfer	335
4.15 Numerical Methods for Steady-State Conduction in Two Dimensions	337
Chapter 5 Principles of Unsteady-State Heat Transfer	357
5.1 Derivation of Basic Equation	357
5.2 Simplified Case for Systems with Negligible Internal Resistance	359
5.3 Unsteady-State Heat Conduction in Various Geometries	361
5.4 Numerical Finite-Difference Methods for Unsteady-State Conduction	378
5.5 Chilling and Freezing of Food and Biological Materials	388
5.6 Differential Equation of Energy Change	393
5.7 Boundary-Layer Flow and Turbulence in Heat Transfer	399
Chapter 6 Principles of Mass Transfer	410
6.1 Introduction to Mass Transfer and Diffusion	410
6.2 Molecular Diffusion in Gases	414
6.3 Molecular Diffusion in Liquids	427
6.4 Molecular Diffusion in Biological Solutions and Gels	436

6.5	Molecular Diffusion in Solids	440
6.6	Numerical Methods for Steady-State Molecular Diffusion in Two Dimensions	446
Chapter 7 Principles of Unsteady-State and Convective Mass Transfer		459
7.1	Unsteady-State Diffusion	459
7.2	Convective Mass-Transfer Coefficients	466
7.3	Mass-Transfer Coefficients for Various Geometries	473
7.4	Mass Transfer to Suspensions of Small Particles	487
7.5	Molecular Diffusion Plus Convection and Chemical Reaction	490
7.6	Diffusion of Gases in Porous Solids and Capillaries	499
7.7	Numerical Methods for Unsteady-State Molecular Diffusion	506
7.8	Dimensional Analysis in Mass Transfer	511
7.9	Boundary-Layer Flow and Turbulence in Mass Transfer	512

PART 2
SEPARATION PROCESS PRINCIPLES
(INCLUDES UNIT OPERATIONS)

Chapter 8 Evaporation		527
8.1	Introduction	527
8.2	Types of Evaporation Equipment and Operation Methods	529
8.3	Overall Heat-Transfer Coefficients in Evaporators	533
8.4	Calculation Methods for Single-Effect Evaporators	534
8.5	Calculation Methods for Multiple-Effect Evaporators	541
8.6	Condensers for Evaporators	550
8.7	Evaporation of Biological Materials	551
8.8	Evaporation Using Vapor Recompression	553
Chapter 9 Drying of Process Materials		559
9.1	Introduction and Methods of Drying	559
9.2	Equipment for Drying	560
9.3	Vapor Pressure of Water and Humidity	564
9.4	Equilibrium Moisture Content of Materials	572
9.5	Rate-of-Drying Curves	575
9.6	Calculation Methods for Constant-Rate Drying Period	580
9.7	Calculation Methods for Falling-Rate Drying Period	585
9.8	Combined Convection, Radiation, and Conduction Heat Transfer in Constant-Rate Period	588
9.9	Drying in Falling-Rate Period by Diffusion and Capillary Flow	591
9.10	Equations for Various Types of Dryers	597
9.11	Freeze-Drying of Biological Materials	607
9.12	Unsteady-State Thermal Processing and Sterilization of Biological Materials	611

Chapter 10 Stage and Continuous Gas–Liquid Separation Processes	625
10.1 Types of Separation Processes and Methods	625
10.2 Equilibrium Relations Between Phases	627
10.3 Single and Multiple Equilibrium Contact Stages	629
10.4 Mass Transfer Between Phases	636
10.5 Continuous Humidification Processes	645
10.6 Absorption in Plate and Packed Towers	653
10.7 Absorption of Concentrated Mixtures in Packed Towers	680
10.8 Estimation of Mass-Transfer Coefficients for Packed Towers	684
10.9 Heat Effects and Temperature Variations in Absorption	687
Chapter 11 Vapor–Liquid Separation Processes	696
11.1 Vapor–Liquid Equilibrium Relations	696
11.2 Single-Stage Equilibrium Contact for Vapor–Liquid System	699
11.3 Simple Distillation Methods	700
11.4 Distillation with Reflux and McCabe–Thiele Method	706
11.5 Distillation and Absorption Efficiencies for Tray and Packed Towers	724
11.6 Fractional Distillation Using Enthalpy–Concentration Method	731
11.7 Distillation of Multicomponent Mixtures	740
Chapter 12 Liquid–Liquid and Fluid–Solid Separation Processes	760
12.1 Introduction to Adsorption Processes	760
12.2 Batch Adsorption	763
12.3 Design of Fixed-Bed Adsorption Columns	764
12.4 Ion-Exchange Processes	771
12.5 Single-Stage Liquid–Liquid Extraction Processes	776
12.6 Types of Equipment and Design for Liquid–Liquid Extraction	782
12.7 Continuous Multistage Countercurrent Extraction	791
12.8 Introduction and Equipment for Liquid–Solid Leaching	802
12.9 Equilibrium Relations and Single-Stage Leaching	809
12.10 Countercurrent Multistage Leaching	812
12.11 Introduction and Equipment for Crystallization	817
12.12 Crystallization Theory	823
Chapter 13 Membrane Separation Processes	840
13.1 Introduction and Types of Membrane Separation Processes	840
13.2 Liquid Permeation Membrane Processes or Dialysis	841
13.3 Gas Permeation Membrane Processes	845
13.4 Complete-Mixing Model for Gas Separation by Membranes	851
13.5 Complete-Mixing Model for Multicomponent Mixtures	856
13.6 Cross-Flow Model for Gas Separation by Membranes	858
13.7 Derivation of Equations for Countercurrent and Cocurrent Flow for Gas Separation for Membranes	864
13.8 Derivation of Finite-Difference Numerical Method for Asymmetric Membranes	872

13.9	Reverse-Osmosis Membrane Processes	883
13.10	Applications, Equipment, and Models for Reverse Osmosis	888
13.11	Ultrafiltration Membrane Processes	892
13.12	Microfiltration Membrane Processes	896
Chapter 14 Mechanical–Physical Separation Processes		903
14.1	Introduction and Classification of Mechanical–Physical Separation Processes	903
14.2	Filtration in Solid–Liquid Separation	904
14.3	Settling and Sedimentation in Particle–Fluid Separation	919
14.4	Centrifugal Separation Processes	932
14.5	Mechanical Size Reduction	944
Appendix		
Appendix A.1	Fundamental Constants and Conversion Factors	955
Appendix A.2	Physical Properties of Water	959
Appendix A.3	Physical Properties of Inorganic and Organic Compounds	969
Appendix A.4	Physical Properties of Foods and Biological Materials	992
Appendix A.5	Properties of Pipes, Tubes, and Screens	996
Notation		999
Index		1009