

Contents

Preface	ix
Acknowledgements	xi
1	
Introduction	1
1.1 Introduction	1
1.2 What is design of experiments (DOE)?	2
1.3 Why design of experiments or statistically designed experiments?	3
1.4 Three approaches to design of experiments—classical, Taguchi and Shainin	4
1.4.1 Classical design of experiments	4
1.4.2 Taguchi methods	5
1.4.3 Shainin methods	6
1.5 Benefits of Taguchi DOE in manufacturing	7
1.6 Problems and gaps in the state of the art	13
Exercises	15
References	15
2	
The Taguchi approach to quality improvement	17
2.1 Taguchi's definition of quality	17
2.2 Understanding variation	18
2.3 Measures of variation	20
2.3.1 The range, "R"	20
2.3.2 The standard deviation, "SD"	21
2.3.3 The mean deviation, "MD"	22
2.4 Variation and its influence on quality	23
2.5 Traditional and Taguchi's approach to quality loss functions	24
2.6 Determination of manufacturing tolerances	29
2.7 Other loss functions	31
2.7.1 Smaller-the-better quality characteristics	31
2.7.2 Larger-the-better quality characteristics	33
2.8 An example of Taguchi's loss function analysis	35
2.9 Taguchi's seven points of achieving quality	37

2.10	Taguchi's quality engineering system	39
2.10.1	On-line quality control system	40
2.10.2	Off-line quality control system	42
	Exercises	45
	References	45
3		
	The Taguchi approach to industrial experimentation	47
3.1	Traditional approach to experimentation	47
3.2	What are orthogonal arrays?	51
3.3	The role of orthogonal arrays	53
3.4	Linear graphs	56
3.5	Degrees of freedom	63
3.6	Randomization in industrial designed experiments	66
3.7	Selecting a standard OA for two-level factors	67
	Exercises	70
	References	71
4		
	Assignment of factor and interaction effects to an OA	73
4.1	Introduction	73
4.2	How to assign factor effects to an OA	74
	Exercises	79
	References	81
5		
	Classification of factors and choice of quality characteristics	83
5.1	Classification of factors in Taguchi's experimental design methodology	83
5.1.1	Control factors (x)	83
5.1.2	Noise factors (z)	86
5.1.3	Signal factors (M)	88
5.2	The role and contribution of noise factors in industrial experiments	89
5.3	Design for robustness—the key to improve product and process quality	90
5.4	Treating noise factors incorrectly	91
5.5	Taguchi's product array approach to experimentation	92
5.6	Choice of quality characteristics for industrial experiments	93
5.6.1	Examples of quality characteristics or responses	95
5.6.2	Multiple quality characteristics or responses	96
5.6.3	Quality characteristics for industrial experiments	100
	Exercises	100
	References	100
6		
	A strategic methodology for Taguchi design of experiments	103
6.1	Introduction	103
6.2	Devised methodology	104

6.3	Comments	115
	Exercises	115
	References	116
7		
	Problem classification	117
7.1	Introduction	117
7.2	Tools for the development of the problem classification framework	118
7.2.1	Understanding and analysing the process	119
7.2.2	Identification and investigation of the problem	119
7.2.3	Prioritization of problem causes	120
7.2.4	Problem classification	121
7.3	Problem classification framework	121
7.4	Generic problem source (GPS)	123
7.5	Problem selection framework (PSF)	126
7.6	Conclusions	132
	Exercises	132
	References	133
8		
	Metrology considerations for industrial experimentation	135
8.1	Introduction	135
8.2	Method of measurement	136
8.2.1	Direct method of measurement	136
8.2.2	Indirect method of measurement	136
8.2.3	Comparison method of measurement	136
8.3	Types of errors in measurements	136
8.4	Precision and accuracy	137
8.4.1	Precision	137
8.4.2	Accuracy	137
8.5	Properties of a good measurement system	138
8.6	The role of measurements in industrial experiments	139
8.7	Gauge repeatability and reproducibility	140
8.8	Planning gauge R&R studies	141
8.8.1	Procedure for conducting a gauge R&R study	142
8.8.2	Statistical control charts for analysing the measurement process variation	142
8.8.3	Analysis of results from R&R studies	145
8.9	Sampling variation in measurement system analysis	148
8.10	Environmental considerations for measurements	149
	Exercises	150
	References	150
9		
	Analysis and interpretation of data from Taguchi experiments	151
9.1	Introduction	151
9.2	Main and interaction effects	152

9.3	Determination of the statistical significance of the main and interaction effects	162
9.4	Signal-to-Noise ratio (SNR)	172
9.5	Relationship between the SNR and quality loss function (QLF)	174
9.6	When and how to use the SNR analysis	175
9.7	ANOVA for the signal-to-noise ratio	178
9.8	Determination of optimal process parameter settings	180
9.9	Estimation of the response at the optimal condition	182
9.10	Confidence interval for the estimated value	184
9.11	Confirmation run or experiment	186
9.12	Omega transformation	187
9.13	Conclusions	188
	Exercises	189
	References	193
10		
	Industrial case studies	195
10.1	Introduction	195
10.2	Case studies	196
10.2.1	Optimization of the life of a critical component in a hydraulic valve	196
10.2.2	Optimization of welding on cast iron using Taguchi methods	204
10.2.3	Reducing variability in transformer inductance through Taguchi methods	211
10.2.4	Optimization of machine performance using Taguchi methods	218
	Appendices	225
	Glossary	239
	Index	247