

Contents

Notation /xi

Chapter 1
Overview of Chemical Reaction Engineering /1

Part I
**Homogeneous Reactions in Ideal
Reactors** /11

Chapter 2
Kinetics of Homogeneous Reactions /13

- 2.1** Concentration-Dependent Term of a Rate Equation /14
- 2.2** Temperature-Dependent Term of a Rate Equation /27
- 2.3** Searching for a Mechanism /29
- 2.4** Predictability of Reaction Rate from Theory /32

Chapter 3
Interpretation of Batch Reactor Data /38

- 3.1** Constant-volume Batch Reactor /39
- 3.2** Varying-volume Batch Reactor /67
- 3.3** Temperature and Reaction Rate /72
- 3.4** The Search for a Rate Equation /75

Chapter 4
Introduction to Reactor Design /83

Chapter 5
Ideal Reactors for a Single Reaction /90

- 5.1 Ideal Batch Reactors /91**
- 5.2. Steady-State Mixed Flow Reactors /94**
- 5.3 Steady-State Plug Flow Reactors /101**

Chapter 6
Design for Single Reactions /120

- 6.1 Size Comparison of Single Reactors /121**
- 6.2 Multiple-Reactor Systems /124**
- 6.3 Recycle Reactor /136**
- 6.4 Autocatalytic Reactions /140**

Chapter 7
Design for Parallel Reactions /152

Chapter 8
Potpourri of Multiple Reactions /170

- 8.1 Irreversible First-Order Reactions in Series /170**
- 8.2 First-Order Followed by Zero-Order Reaction /178**
- 8.3 Zero-Order Followed by First-Order Reaction /179**
- 8.4 Successive Irreversible Reactions of Different Orders /180**
- 8.5 Reversible Reactions /181**
- 8.6 Irreversible Series-Parallel Reactions /181**
- 8.7 The Denbigh Reaction and its Special Cases /194**

Chapter 9
Temperature and Pressure Effects /207

- 9.1 Single Reactions /207**
- 9.2 Multiple Reactions /235**

Chapter 10
Choosing the Right Kind of Reactor /240

Part II
Flow Patterns, Contacting, and Non-Ideal Flow /255

Chapter 11
Basics of Non-Ideal Flow /257

- 11.1 E, the Age Distribution of Fluid, the RTD /260**
- 11.2 Conversion in Non-Ideal Flow Reactors /273**

Chapter 12
Compartment Models /283**Chapter 13**
The Dispersion Model /293

- 13.1** Axial Dispersion /293
- 13.2** Correlations for Axial Dispersion /309
- 13.3** Chemical Reaction and Dispersion /312

Chapter 14
The Tanks-in-Series Model /321

- 14.1** Pulse Response Experiments and the RTD /321
- 14.2** Chemical Conversion /328

Chapter 15
The Convection Model for Laminar Flow /339

- 15.1** The Convection Model and its RTD /339
- 15.2** Chemical Conversion in Laminar Flow Reactors /345

Chapter 16
Earliness of Mixing, Segregation and RTD /350

- 16.1** Self-mixing of a Single Fluid /350
- 16.2** Mixing of Two Miscible Fluids /361

Part III
Reactions Catalyzed by Solids /367**Chapter 17**
Heterogeneous Reactions – Introduction /369**Chapter 18**
Solid Catalyzed Reactions /376

- 18.1** The Rate Equation for Surface Kinetics /379
- 18.2** Pore Diffusion Resistance Combined with Surface Kinetics /381
- 18.3** Porous Catalyst Particles /385
- 18.4** Heat Effects During Reaction /391
- 18.5** Performance Equations for Reactors Containing Porous Catalyst Particles /393
- 18.6** Experimental Methods for Finding Rates /396
- 18.7** Product Distribution in Multiple Reactions /402

Chapter 19
The Packed Bed Catalytic Reactor /427

Chapter 20
**Reactors with Suspended Solid Catalyst,
Fluidized Reactors of Various Types /447**

- 20.1** Background Information About Suspended Solids Reactors /447
- 20.2** The Bubbling Fluidized Bed—BFB /451
- 20.3** The K-L Model for BFB /445
- 20.4** The Circulating Fluidized Bed—CFB /465
- 20.5** The Jet Impact Reactor /470

Chapter 21
Deactivating Catalysts /473

- 21.1** Mechanisms of Catalyst Deactivation /474
- 21.2** The Rate and Performance Equations /475
- 21.3** Design /489

Chapter 22
**G/L Reactions on Solid Catalyst: Trickle Beds, Slurry
Reactors, Three-Phase Fluidized Beds /500**

- 22.1** The General Rate Equation /500
- 22.2** Performance Equations for an Excess of B /503
- 22.3** Performance Equations for an Excess of A /509
- 22.4** Which Kind of Contactor to Use /509
- 22.5** Applications /510

Part IV
Non-Catalytic Systems /521

Chapter 23
Fluid-Fluid Reactions: Kinetics /523

- 23.1** The Rate Equation /524

Chapter 24
Fluid-Fluid Reactors: Design /540

- 24.1** Straight Mass Transfer /543
- 24.2** Mass Transfer Plus Not Very Slow Reaction /546

Chapter 25
Fluid-Particle Reactions: Kinetics /566

- 25.1** Selection of a Model /568
- 25.2** Shrinking Core Model for Spherical Particles of Unchanging Size /570

- 25.3** Rate of Reaction for Shrinking Spherical Particles /577
- 25.4** Extensions /579
- 25.5** Determination of the Rate-Controlling Step /582

Chapter 26 **Fluid-Particle Reactors: Design /589**

Part V **Biochemical Reaction Systems /609**

- Chapter 27**
Enzyme Fermentation /611
 - 27.1** Michaelis-Menten Kinetics (M-M kinetics) /612
 - 27.2** Inhibition by a Foreign Substance—Competitive and Noncompetitive Inhibition /616

Chapter 28 **Microbial Fermentation—Introduction and Overall Picture /623**

- Chapter 29**
Substrate-Limiting Microbial Fermentation /630
 - 29.1** Batch (or Plug Flow) Fermentors /630
 - 29.2** Mixed Flow Fermentors /633
 - 29.3** Optimum Operations of Fermentors /636

Chapter 30 **Product-Limiting Microbial Fermentation /645**

- 30.1** Batch or Plus Flow Fermentors for $n = 1$ /646
- 30.2** Mixed Flow Fermentors for $n = 1$ /647

Appendix /655

Name Index /662

Subject Index /665