

Contents

Abbreviations	xv		
Preface to the second edition	xvii		
Organic chemistry and this book	xix		
1 What is organic chemistry?	1	4 Structure of molecules	80
Organic chemistry and you	1	Introduction	80
Organic compounds	2	Electrons occupy atomic orbitals	83
Organic chemistry and industry	6	Molecular orbitals—diatomic molecules	88
Organic chemistry and the periodic table	11	Bonds between different atoms	95
Organic chemistry and this book	13	Hybridization of atomic orbitals	99
Further reading	13	Rotation and rigidity	105
		Conclusion	106
		Looking forward	106
		Further reading	106
2 Organic structures	15	5 Organic reactions	107
Hydrocarbon frameworks and functional groups	16	Chemical reactions	107
Drawing molecules	17	Nucleophiles and electrophiles	111
Hydrocarbon frameworks	22	Curly arrows represent reaction mechanisms	116
Functional groups	27	Drawing your own mechanisms with curly arrows	120
Carbon atoms carrying functional groups can be classified by oxidation level	32	Further reading	124
Naming compounds	33		
What do chemists really call compounds?	36		
How should you name compounds?	40		
Further reading	42		
3 Determining organic structures	43	6 Nucleophilic addition to the carbonyl group	125
Introduction	43	Molecular orbitals explain the reactivity of the carbonyl group	125
Mass spectrometry	46	Attack of cyanide on aldehydes and ketones	127
Mass spectrometry detects isotopes	48	The angle of nucleophilic attack on aldehydes and ketones	129
Atomic composition can be determined by high-resolution mass spectrometry	50	Nucleophilic attack by 'hydride' on aldehydes and ketones	130
Nuclear magnetic resonance	52	Addition of organometallic reagents to aldehydes and ketones	132
Regions of the ^{13}C NMR spectrum	56	Addition of water to aldehydes and ketones	133
Different ways of describing chemical shift	57	Hemiacetals from reaction of alcohols with aldehydes and ketones	135
A guided tour of the ^{13}C NMR spectra of some simple molecules	57	Ketones also form hemiacetals	137
The ^1H NMR spectrum	59	Acid and base catalysis of hemiacetal and hydrate formation	137
Infrared spectra	63	Bisulfite addition compounds	138
Mass spectra, NMR, and IR combined make quick identification possible	72	Further reading	140
Double bond equivalents help in the search for a structure	74		
Looking forward to Chapters 13 and 18	78		
Further reading	78		
		7 Delocalization and conjugation	141
		Introduction	141
		The structure of ethene (ethylene, $\text{CH}_2=\text{CH}_2$)	142
		Molecules with more than one $\text{C}=\text{C}$ double bond	143

The conjugation of two π bonds	146	And to conclude...	220
UV and visible spectra	148	Further reading	220
The allyl system	150		
Delocalization over three atoms is a common structural feature	154		
Aromaticity	156		
Further reading	162		
8 Acidity, basicity, and pK_a	163	11 Nucleophilic substitution at $C=O$ with loss of carbonyl oxygen	222
Organic compounds are more soluble in water as ions	163	Introduction	222
Acids, bases, and pK_a	165	Aldehydes can react with alcohols to form hemiacetals	223
Acidity	165	Acetals are formed from aldehydes or ketones plus alcohols in the presence of acid	224
The definition of pK_a	168	Amines react with carbonyl compounds	229
Constructing a pK_a scale	171	Imines are the nitrogen analogues of carbonyl compounds	230
Nitrogen compounds as acids and bases	174	Summary	238
Substituents affect the pK_a	175	Further reading	239
Carbon acids	176		
pK_a in action—the development of the drug cimetidine	178		
Lewis acids and bases	180		
Further reading	181		
9 Using organometallic reagents to make C–C bonds	182	12 Equilibria, rates, and mechanisms	240
Introduction	182	How far and how fast?	240
Organometallic compounds contain a carbon–metal bond	183	How to make the equilibrium favour the product you want	244
Making organometallics	184	Entropy is important in determining equilibrium constants	246
Using organometallics to make organic molecules	189	Equilibrium constants vary with temperature	248
Oxidation of alcohols	194	Introducing kinetics: how to make reactions go faster and cleaner	250
Looking forward	196	Rate equations	257
Further reading	196	Catalysis in carbonyl substitution reactions	262
10 Nucleophilic substitution at the carbonyl group	197	Kinetic versus thermodynamic products	264
The product of nucleophilic addition to a carbonyl group is not always a stable compound	197	Summary of mechanisms from Chapters 6–12	266
Carboxylic acid derivatives	198	Further reading	267
Why are the tetrahedral intermediates unstable?	200		
Not all carboxylic acid derivatives are equally reactive	205		
Acid catalysts increase the reactivity of a carbonyl group	207		
Acid chlorides can be made from carboxylic acids using $SOCl_2$ or PCl_5	214		
Making other compounds by substitution reactions of acid derivatives	216		
Making ketones from esters: the problem	216		
Making ketones from esters: the solution	218		
To summarize...	220		
13 1H NMR: Proton nuclear magnetic resonance	269		
The differences between carbon and proton NMR	269		
Integration tells us the number of hydrogen atoms in each peak	270		
Regions of the proton NMR spectrum	272		
Protons on saturated carbon atoms	272		
The alkene region and the benzene region	277		
The aldehyde region: unsaturated carbon bonded to oxygen	281		
Protons on heteroatoms have more variable shifts than protons on carbon	282		
Coupling in the proton NMR spectrum	285		
To conclude	301		
Further reading	301		
14 Stereochemistry	302		
Some compounds can exist as a pair of mirror-image forms	302		

Diastereoisomers are stereoisomers that are not enantiomers	311	Anion-stabilizing groups allow another mechanism—E1cB	399
Chiral compounds with no stereogenic centres	319	To conclude	404
Axes and centres of symmetry	320	Further reading	406
Separating enantiomers is called resolution	322		
Further reading	327		
15 Nucleophilic substitution at saturated carbon	328	18 Review of spectroscopic methods	407
Mechanisms for nucleophilic substitution	328	There are three reasons for this chapter	407
How can we decide which mechanism (S_N1 or S_N2) will apply to a given organic compound?	332	Spectroscopy and carbonyl chemistry	408
A closer look at the S_N1 reaction	333	Acid derivatives are best distinguished by infrared	411
A closer look at the S_N2 reaction	340	Small rings introduce strain inside the ring and higher s character outside it	412
Contrasts between S_N1 and S_N2	342	Simple calculations of $C=O$ stretching frequencies in IR spectra	413
The leaving group in S_N1 and S_N2 reactions	347	NMR spectra of alkynes and small rings	414
The nucleophile in S_N1 reactions	352	Proton NMR distinguishes axial and equatorial protons in cyclohexanes	415
The nucleophile in the S_N2 reaction	353	Interactions between different nuclei can give enormous coupling constants	415
Nucleophiles and leaving groups compared	357	Identifying products spectroscopically	418
Looking forward: elimination and rearrangement reactions	358	Tables	422
Further reading	359	Shifts in proton NMR are easier to calculate and more informative than those in carbon NMR	425
		Further reading	426
16 Conformational analysis	360	19 Electrophilic addition to alkenes	427
Bond rotation allows chains of atoms to adopt a number of conformations	360	Alkenes react with bromine	427
Conformation and configuration	361	Oxidation of alkenes to form epoxides	429
Barriers to rotation	362	Electrophilic addition to unsymmetrical alkenes is regioselective	433
Conformations of ethane	363	Electrophilic addition to dienes	435
Conformations of propane	365	Unsymmetrical bromonium ions open regioselectively	436
Conformations of butane	365	Electrophilic additions to alkenes can be stereospecific	439
Ring strain	366	Adding two hydroxyl groups: dihydroxylation	442
A closer look at cyclohexane	370	Breaking a double bond completely: periodate cleavage and ozonolysis	443
Substituted cyclohexanes	374	Adding one hydroxyl group: how to add water across a double bond	444
To conclude...	381	To conclude... a synopsis of electrophilic addition reactions	447
Further reading	381	Further reading	447
17 Elimination reactions	382	20 Formation and reactions of enols and enolates	449
Substitution and elimination	382	Would you accept a mixture of compounds as a pure substance?	449
How the nucleophile affects elimination versus substitution	384	Tautomerism: formation of enols by proton transfer	450
E1 and E2 mechanisms	386	Why don't simple aldehydes and ketones exist as enols?	451
Substrate structure may allow E1	388		
The role of the leaving group	390		
E1 reactions can be stereoselective	391		
E2 eliminations have anti-periplanar transition states	395		
The regioselectivity of E2 eliminations	398		

Evidence for the equilibration of carbonyl compounds with enols	451	To conclude...	526
Enolization is catalysed by acids and bases	452	Further reading	527
The intermediate in the base-catalysed reaction is an enolate ion	452		
Summary of types of enol and enolate	454		
Stable enols	456		
Consequences of enolization	459		
Reaction with enols or enolates as intermediates	460		
Stable equivalents of enolate ions	465		
Enol and enolate reactions at oxygen: preparation of enol ethers	467		
Reactions of enol ethers	468		
To conclude	470		
Further reading	470		
21 Electrophilic aromatic substitution	471	23 Chemoselectivity and protecting groups	528
Introduction: enols and phenols	471	Selectivity	528
Benzene and its reactions with electrophiles	473	Reducing agents	530
Electrophilic substitution on phenols	479	Reduction of carbonyl groups	530
A nitrogen lone pair activates even more strongly	482	Hydrogen as a reducing agent: catalytic hydrogenation	534
Alkyl benzenes also react at the <i>ortho</i> and <i>para</i> positions	484	Getting rid of functional groups	539
Electron-withdrawing substituents give <i>meta</i> products	486	Dissolving metal reductions	541
Halogens show evidence of both electron withdrawal and donation	489	Selectivity in oxidation reactions	544
Two or more substituents may cooperate or compete	491	Competing reactivity: choosing which group reacts	546
Some problems and some opportunities	492	A survey of protecting groups	549
A closer look at Friedel–Crafts chemistry	492	Further reading	561
Exploiting the chemistry of the nitro group	494		
Summary	495		
Further reading	497		
22 Conjugate addition and nucleophilic aromatic substitution	498	24 Regioselectivity	562
Alkenes conjugated with carbonyl groups	498	Introduction	562
Conjugated alkenes can be electrophilic	499	Regioselectivity in electrophilic aromatic substitution	563
Summary: factors controlling conjugate addition	509	Electrophilic attack on alkenes	570
Extending the reaction to other electron-deficient alkenes	510	Regioselectivity in radical reactions	571
Conjugate substitution reactions	511	Nucleophilic attack on allylic compounds	574
Nucleophilic epoxidation	513	Electrophilic attack on conjugated dienes	579
Nucleophilic aromatic substitution	514	Conjugate addition	581
The addition–elimination mechanism	515	Regioselectivity in action	582
The S_N1 mechanism for nucleophilic aromatic substitution: diazonium compounds	520	Further reading	583
The benzene mechanism	523		
25 Alkylation of enolates	584		
Carbonyl groups show diverse reactivity			584
Some important considerations that affect all alkylations			584
Nitriles and nitroalkanes can be alkylated			585
Choice of electrophile for alkylation			587
Lithium enolates of carbonyl compounds			587
Alkylation of lithium enolates			588
Using specific enol equivalents to alkylate aldehydes and ketones			591
Alkylation of β -dicarbonyl compounds			595
Ketone alkylation poses a problem in regioselectivity			598
Enones provide a solution to regioselectivity problems			601
Using Michael acceptors as electrophiles			605
To conclude...			612
Further reading			613
26 Reactions of enolates with carbonyl compounds: the aldol and Claisen reactions	614		
Introduction			614
The aldol reaction			615
Cross-condensations			618

Specific enol equivalents can be used to control aldol reactions	624	Functional group interconversion	699
How to control aldol reactions of esters	631	Two-group disconnections are better than one-group disconnections	702
How to control aldol reactions of aldehydes	632	C–C disconnections	706
How to control aldol reactions of ketones	634	Available starting materials	711
Intramolecular aldol reactions	636	Donor and acceptor synthons	712
Acylation at carbon	640	Two-group C–C disconnections	712
Crossed ester condensations	643	1,5-Related functional groups	719
Summary of the preparation of keto-esters by the Claisen reaction	647	'Natural reactivity' and 'umpolung'	719
Controlling acylation with specific enol equivalents	648	To conclude...	722
Intramolecular crossed Claisen ester condensations	652	Further reading	722
Carbonyl chemistry—where next?	654		
Further reading	654		
27 Sulfur, silicon, and phosphorus in organic chemistry	656	29 Aromatic heterocycles 1: reactions	723
Useful main group elements	656	Introduction	723
Sulfur: an element of contradictions	656	Aromaticity survives when parts of benzene's ring are replaced by nitrogen atoms	724
Sulfur-stabilized anions	660	Pyridine is a very unreactive aromatic imine	725
Sulfonium salts	664	Six-membered aromatic heterocycles can have oxygen in the ring	732
Sulfonium ylids	665	Five-membered aromatic heterocycles are good at electrophilic substitution	733
Silicon and carbon compared	668	Furan and thiophene are oxygen and sulfur analogues of pyrrole	735
Allyl silanes as nucleophiles	675	More reactions of five-membered heterocycles	738
The selective synthesis of alkenes	677	Five-membered rings with two or more nitrogen atoms	740
The properties of alkenes depend on their geometry	677	Benzo-fused heterocycles	745
Exploiting cyclic compounds	678	Putting more nitrogen atoms in a six-membered ring	748
Equilibration of alkenes	679	Fusing rings to pyridines: quinolines and isoquinolines	749
<i>E</i> and <i>Z</i> alkenes can be made by stereoselective addition to alkynes	681	Aromatic heterocycles can have many nitrogens but only one sulfur or oxygen in any ring	751
Predominantly <i>E</i> alkenes can be formed by stereoselective elimination reactions	684	There are thousands more heterocycles out there	753
The Julia olefination is regiospecific and connective	686	Which heterocyclic structures should you learn?	754
Stereospecific eliminations can give pure single isomers of alkenes	688	Further reading	755
Perhaps the most important way of making alkenes—the Wittig reaction	689		
To conclude	693		
Further reading	693		
28 Retrosynthetic analysis	694	30 Aromatic heterocycles 2: synthesis	757
Creative chemistry	694	Thermodynamics is on our side	758
Retrosynthetic analysis: synthesis backwards	694	Disconnect the carbon–heteroatom bonds first	758
Disconnections must correspond to known, reliable reactions	695	Pyrroles, thiophenes, and furans from 1,4-dicarbonyl compounds	760
Synthons are idealized reagents	695	How to make pyridines: the Hantzsch pyridine synthesis	763
Multiple step syntheses: avoid chemoselectivity problems	698	Pyrazoles and pyridazines from hydrazine and dicarbonyl compounds	767
		Pyrimidines can be made from 1,3-dicarbonyl compounds and amidines	770
		Unsymmetrical nucleophiles lead to selectivity questions	771
		Isoxazoles are made from hydroxylamine or by cycloaddition	772
		Tetrazoles and triazoles are also made by cycloadditions	774
		The Fischer indole synthesis	775

Quinolines and isoquinolines	780	The Woodward–Hoffmann description of the Diels–Alder reaction	892
More heteroatoms in fused rings mean more choice in synthesis	784	Trapping reactive intermediates by cycloadditions	893
Summary: the three major approaches to the synthesis of aromatic heterocycles	785	Other thermal cycloadditions	894
Further reading	788	Photochemical [2 + 2] cycloadditions	896
31 Saturated heterocycles and stereoelectronics	789	Thermal [2 + 2] cycloadditions	898
Introduction	789	Making five-membered rings: 1,3-dipolar cycloadditions	901
Reactions of saturated heterocycles	790	Two very important synthetic reactions: cycloaddition of alkenes with osmium tetroxide and with ozone	905
Conformation of saturated heterocycles	796	Summary of cycloaddition reactions	907
Making heterocycles: ring-closing reactions	805	Further reading	908
Ring size and NMR	814	35 Pericyclic reactions 2: sigmatropic and electrocyclic reactions	909
Geminal (2J) coupling	817	Sigmatropic rearrangements	909
Diastereotopic groups	820	Orbital descriptions of [3,3]-sigmatropic rearrangements	912
To summarize...	824	The direction of [3,3]-sigmatropic rearrangements	913
Further reading	824	[2,3]-Sigmatropic rearrangements	917
32 Stereoselectivity in cyclic molecules	825	[1,5]-Sigmatropic hydrogen shifts	919
Introduction	825	Electrocyclic reactions	922
Stereochemical control in six-membered rings	826	Further reading	930
Reactions on small rings	832	36 Participation, rearrangement, and fragmentation	931
Regiochemical control in cyclohexene epoxides	836	Neighbouring groups can accelerate substitution reactions	931
Stereoselectivity in bicyclic compounds	839	Rearrangements occur when a participating group ends up bonded to a different atom	937
Fused bicyclic compounds	841	Carbocations readily rearrange	940
Spirocyclic compounds	846	The pinacol rearrangement	945
Reactions with cyclic intermediates or cyclic transition states	847	The dienone-phenol rearrangement	949
To summarize...	851	The benzilic acid rearrangement	950
Further reading	851	The Favorskii rearrangement	950
33 Diastereoselectivity	852	Migration to oxygen: the Baeyer–Villiger reaction	953
Looking back	852	The Beckmann rearrangement	958
Prochirality	856	Polarization of C–C bonds helps fragmentation	960
Additions to carbonyl groups can be diastereoselective even without rings	858	Fragmentations are controlled by stereochemistry	962
Stereoselective reactions of acyclic alkenes	865	Ring expansion by fragmentation	963
Aldol reactions can be stereoselective	868	Controlling double bonds using fragmentation	965
Single enantiomers from diastereoselective reactions	871	The synthesis of nootkatone: fragmentation showcase	966
Looking forward	876	Looking forward	969
Further reading	876	Further reading	969
34 Pericyclic reactions 1: cycloadditions	877	37 Radical reactions	970
A new sort of reaction	877	Radicals contain unpaired electrons	970
General description of the Diels–Alder reaction	879	Radicals form by homolysis of weak bonds	971
The frontier orbital description of cycloadditions	886		
Regioselectivity in Diels–Alder reactions	889		

Most radicals are extremely reactive...	974	Summary of methods for the investigation of mechanism	1067
How to analyse the structure of radicals: electron spin resonance	975	Further reading	1068
Radical stability	977		
How do radicals react?	980		
Radical–radical reactions	980		
Radical chain reactions	984		
Chlorination of alkanes	986		
Allylic bromination	989		
Reversing the selectivity: radical substitution of Br by H	990		
Carbon–carbon bond formation with radicals	992		
The reactivity pattern of radicals is quite different from that of polar reagents	997		
Alkyl radicals from boranes and oxygen	998		
Intramolecular radical reactions are more efficient than intermolecular ones	999		
Looking forward	1002		
Further reading	1002		
38 Synthesis and reactions of carbenes	1003		
Diazomethane makes methyl esters from carboxylic acids	1003	An overview of some other transition metals	1099
Photolysis of diazomethane produces a carbene	1005	Further reading	1101
How do we know that carbenes exist?	1006		
Ways to make carbenes	1006		
Carbenes can be divided into two types	1010		
How do carbenes react?	1013		
Carbenes react with alkenes to give cyclopropanes	1013		
Insertion into C–H bonds	1018		
Rearrangement reactions	1020		
Nitrenes are the nitrogen analogues of carbenes	1022		
Alkene metathesis	1023		
Summary	1027		
Further reading	1027		
39 Determining reaction mechanisms	1029		
There are mechanisms and there are mechanisms	1029		
Determining reaction mechanisms: the Cannizzaro reaction	1031		
Be sure of the structure of the product	1035		
Systematic structural variation	1040		
The Hammett relationship	1041		
Other kinetic evidence for reaction mechanisms	1050		
Acid and base catalysis	1053		
The detection of intermediates	1060		
Stereochemistry and mechanism	1063		
40 Organometallic chemistry	1069		
Transition metals extend the range of organic reactions	1069		
The 18 electron rule	1070		
Bonding and reactions in transition metal complexes	1073		
Palladium is the most widely used metal in homogeneous catalysis	1078		
The Heck reaction couples together an organic halide or triflate and an alkene	1079		
Cross-coupling of organometallics and halides	1082		
Allylic electrophiles are activated by palladium(0)	1088		
Palladium-catalysed amination of aromatic rings	1092		
Alkenes coordinated to palladium(II) are attacked by nucleophiles	1096		
Palladium catalysis in the total synthesis of a natural alkaloid	1098		
An overview of some other transition metals	1099		
Further reading	1101		
41 Asymmetric synthesis	1102		
Nature is asymmetric	1102		
The chiral pool: Nature's chiral centres 'off the shelf'	1104		
Resolution can be used to separate enantiomers	1106		
Chiral auxiliaries	1107		
Chiral reagents	1113		
Asymmetric catalysis	1114		
Asymmetric formation of carbon–carbon bonds	1126		
Asymmetric aldol reactions	1129		
Enzymes as catalysts	1132		
Further reading	1133		
42 Organic chemistry of life	1134		
Primary metabolism	1134		
Life begins with nucleic acids	1135		
Proteins are made of amino acids	1139		
Sugars—just energy sources?	1142		
Lipids	1147		
Mechanisms in biological chemistry	1149		
Natural products	1156		
Fatty acids and other polyketides are made from acetyl CoA	1161		
Terpenes are volatile constituents of plants	1164		
Further reading	1167		

43	Organic chemistry today	1169	Figure acknowledgements	1182
	Science advances through interaction between disciplines	1169	Periodic table of the elements	1184
	Chemistry vs viruses	1170	Index	1187
	The future of organic chemistry	1179		
	Further reading	1181		