

CONTENTS

	<i>page</i>
Preface to Second Edition	xii
Preface to First Edition	xii

I GENERAL INTRODUCTION

1. Scope of the subject	1
2. Notation and some basic ideas	2
3. Summary of subject matter in following chapters	4
General references	6

II REFLECTION OF ELECTROMAGNETIC WAVES FROM HORIZONTALLY STRATIFIED MEDIA

Abstract	8
1. Introduction	8
2. Plane wave incidence	10
3. Extension to perpendicular incidence	15
4. Impedance matching and natural oscillations in stratified media	17
5. Line source excitation	21
6. Line source on a homogeneous medium	25
7. Line source over a thin layer	27
8. The radiation field of the line source for any number of layers	31
9. Magnetic line source over a stratified medium	32
10. Magnetic line source over a dielectric coated conductor	33
11. The fields of a vertical electric dipole over a stratified half-space	35
12. Some experimental measurements	45
Appendix A Evaluation of the integral P	48
Appendix B Numerical results for surface impedance of a stratified conductor	53
References	62

III REFLECTION OF ELECTROMAGNETIC WAVES FROM INHOMOGENEOUS MEDIA WITH SPECIAL PROFILES

Abstract	64
1. Introduction	64
2. General considerations	64
3. Inverse square profile	65
4. Profile with an exponential transition	68
5. Other exponential profiles	70
6. Linear profile	75
7. Extension to vertical polarization	78
8. Exponential profile with vertical polarization	79
9. Power law profile for normal incidence	81
References	84

IV APPROXIMATE METHODS FOR TREATING REFLECTIONS FROM
INHOMOGENEOUS MEDIA

	<i>page</i>
Abstract	85
1. Introduction and the conventional WKB method	85
2. WKB method for oblique incidence	86
3. Generalization of WKB method	88
4. Generalized WKB method for vertical polarization	90
5. Relation to geometrical optics	91
6. Application to tropospheric propagation	93
7. The phase integral approach	95
8. A generalization of the phase integral method	98
9. Phase integral for vertical polarization	99
10. Rapidly varying transition region	100
10.1 Introduction	101
10.2 Differential equation for the reflection coefficient	102
10.3 Iterative solution	103
10.4 Some simple extensions of the solution	103
10.5 Discussion of the form of the solution	105
References	

V PROPAGATION ALONG A SPHERICAL SURFACE

Abstract	107
1. Basic formulation	107
2. The Watson transformation	110
3. Formula for small curvature	113
4. Influence of an inhomogeneous atmosphere	115
5. Equivalent earth radius concept	117
6. Extension to non-linear atmosphere	118
7. Asymptotic form of the solution	122
8. Distance to the horizon	124
9. Concluding remarks	128
References	130

VI FUNDAMENTALS OF MODE THEORY OF WAVE PROPAGATION

Abstract	132
1. Introduction	132
2. Basic concepts	134
3. Formulation for flat earth case	137
3.1 Vertical dipole excitation	137
3.2 Horizontal dipole excitation	143
4. Properties of the modes for flat earth case	147
4.1 Vertical polarization	147
4.2 Horizontal polarization	151
5. Influence of earth curvature	153
6. Mode series for a curved earth	157
7. Antipodal effects	162
8. Resonator-type oscillations between earth and the ionosphere	163
9. Excitation by horizontal dipoles for the curved earth	168
10. Higher approximations to the curved earth theory	174
11. Influence of stratification at the lower edge of the ionosphere	182
12. Average decay laws	187
13. Appendix	193
References	193

VII CHARACTERISTICS OF THE MODES FOR VLF PROPAGATION

	<i>page</i>
Abstract	196
1. Introduction	196
2. The ground wave	196
3. The sky waves	196
4. The roots of the modal equation	197
5. Comments on a more accurate form of the mode equation	201
6. The height-gain functions	213
7. The excitation of VLF modes	218
8. Discussion of the earth detached mode	221
References	224
	225

VIII PROPAGATION IN STRATIFIED MAGNETO-PLASMA MEDIA

Abstract	226
1. Introduction	226
2. The dielectric properties of a plasma	226
3. The field equations	227
4. Reflection coefficient for a plane boundary between free space and plasma	231
5. Reflection from a stratified plasma	233
6. Arbitrary inclination of magnetic field	236
7. Reflection from a homogeneous plasma with arbitrary magnetic field	239
8. Derivation of approximate reflection coefficients	243
9. The mode series for an anisotropic ionosphere	246
10. Effect of earth curvature	251
Appendix A	254
Appendix B A Note on the energy dependence of the collision frequency	256
Appendix C Application of the Booker quartic to calculation of reflection coefficients	260
References	263

IX VLF PROPAGATION—THEORY AND EXPERIMENT

Abstract	264
1. Introduction	264
2. Approximate solutions of the mode equation	264
2.1 Alternate expansion for the reflection coefficient	264
2.2 Application of the Q.L. approximation	265
2.3 Application of the transverse condition	268
2.4 Extension to arbitrary dipping magnetic field	269
2.5 Inclusion of earth curvature in the analysis	274
3. Measured field strength vs. distance data at VLF	277
4. Measured phase characteristics of VLF carriers	281
5. Measurements of diurnal phase shifts at VLF	284
6. Sferics and mode theory	285
References	287

X ELF (EXTREMELY LOW FREQUENCY) PROPAGATION—THEORY AND EXPERIMENT

	<i>page</i>
Abstract	289
1. Introduction	289
2. Basic theoretical model	289
3. Antipodal effects	291
4. Earth-flattening approximation	291
5. Distance and frequency dependence	295
6. Near-field behavior	298
7. Effect of the earth's magnetic field	300
8. Effect of an inhomogeneous atmosphere	306
9. Propagation of ELF pulses	309
10. Interpretation of Hepburn's experimental data	313
11. Influence of horizontal currents	315
Appendix	318
References	321

XI ASYMPTOTIC DEVELOPMENT FOR GUIDED WAVE PROPAGATION

Abstract	324
1. Introduction	324
2. Formulation of problem	324
3. The complex integral representation	325
4. The mode representation	328
5. Ray theory and saddle point approximations	329
6. Relation to geometrical optics	332
7. Treatment at the caustic	336
8. Applications to tropospheric propagation	338
9. Concluding remarks	339
References	340

XII SUPERREFRACTION AND THE THEORY OF TROPOSPHERIC DUCTING

Abstract	341
1. Introduction	341
2. Formulation	341
3. The asymptotic solution	343
4. The special case of a normal atmosphere	344
5. Reduction to ray theory for "normal" atmosphere	346
6. Extension of theory to include superrefraction	348
7. Refinements to the asymptotic approximations	351
8. A few quantitative results for tropospheric ducting	354
9. Reduction to the phase integral form	356
10. The modified index of refraction method	358
References	363

XIII APPENDIX—SUPPLEMENTARY MATERIAL

	<i>page</i>
1. Influence of the lower ionosphere on propagation of VLF waves to great distances	367
2. Height-gain for VLF radio waves	379
3. Concerning solutions of the VLF mode problem for an anisotropic curved ionosphere	391
4. Reflection of VLF radio waves from an inhomogeneous ionosphere. Part I. Exponentially varying isotropic model	403
5. Reflection of VLF radio waves from an inhomogeneous ionosphere. Part II. Perturbed exponential model	417
6. Reflection of VLF radio waves from an inhomogeneous ionosphere. Part III. Exponential model with hyperbolic transition	429
7. Some remarks on mode and ray theories of VLF radio propagation	441
8. Two-dimensional treatment of mode theory of the propagation of VLF radio waves	445
9. Reflection of electromagnetic waves from a lossy magnetoplasma	463
10. A note on VHF reflection from a tropospheric layer	477
11. Concerning the mechanism of reflection of electromagnetic waves from an inhomogeneous lossy plasma	481
12. Influence of an inhomogeneous ground on the propagation of VLF radio waves in the earth-ionosphere waveguide	491
13. Propagation in a model terrestrial waveguide of nonuniform height: Theory and experiment	505
14. Transverse propagation of waveguide modes in a cylindrically stratified magnetoplasma	529
15. Cavity resonator modes in a cylindrically stratified magnetoplasma	545
16. Electromagnetic propagation in an idealized earth crust waveguide	551
17. Illumination of an inhomogeneous spherical earth by an LF plane electromagnetic wave	565
18. Radiation from dipoles in an idealized jungle environment	575
19. Comments on a paper "A numerical investigation of classical approximations used in VLF propagation" by Pappert, Gossard, Rothmuller	581
20. On the calculation of mode conversion at a graded height change in the earth-ionosphere waveguide at VLF	583
ERRATA AND ADDENDA	593
Author Index	599
Subject Index	603