
Contents

<i>Foreword</i>	ix
<i>Preface</i>	xi
<i>Acknowledgments</i>	xiii

1 Introduction	1
1.1 <i>Background</i>	1
1.2 <i>Challenges in relevant research areas</i>	4
1.3 <i>Significance of the book</i>	6
1.4 <i>Structure of the book</i>	7
References	8
2 State-of-the-art review on concrete structures subjected to impact loads	13
2.1 <i>Introduction</i>	13
2.2 <i>Structural columns subjected to impact loads</i>	16
2.3 <i>Beams and slabs subjected to impact loads</i>	19
2.4 <i>Bridge piers subjected to impact loads</i>	28
2.4.1 <i>Bridge piers subjected to vehicle collisions</i>	29
2.4.2 <i>Bridge piers subjected to vessel collisions</i>	37
2.5 <i>Chapter review</i>	44
References	45
3 State-of-the-art review on concrete structures subjected to blast loads	57
3.1 <i>Introduction</i>	57
3.1.1 <i>Theoretical background</i>	57
3.1.2 <i>Analysis of structures subjected to blast loads</i>	59
3.1.3 <i>Typical damage modes of RC structures subjected to blast loads</i>	62
3.1.4 <i>Design codes for structures against blast loads</i>	64
3.2 <i>Structural columns subjected to blast loads</i>	66
3.3 <i>Beams and slabs subjected to blast loads</i>	76
3.4 <i>Bridge piers subjected to blast loads</i>	84
3.5 <i>Chapter review</i>	94
References	94

4 Nonlinear dynamic analysis of RC columns subjected to lateral impact loads	101
4.1 <i>Introduction</i>	101
4.2 <i>FE simulation of impact tests on RC columns</i>	102
4.3 <i>Drop weight impact of axially loaded RC columns</i>	104
4.4 <i>Nonlinear dynamic analysis of axially loaded columns subjected to lateral impact</i>	105
4.4.1 <i>Mid-span impact</i>	105
4.4.2 <i>Plastic hinge locations</i>	108
4.4.3 <i>Different impact locations</i>	113
4.4.4 <i>Parametric analysis</i>	116
4.5 <i>Case study</i>	119
4.6 <i>Conclusions</i>	127
References	127
5 Progressive damage assessment of bridge pier subjected to ship collision	131
5.1 <i>Introduction</i>	131
5.2 <i>FE modeling and validations</i>	133
5.2.1 <i>FE model of ship</i>	133
5.2.2 <i>FE model of bridge pier</i>	135
5.3 <i>Strain rate effects of materials</i>	137
5.4 <i>Results and discussion</i>	145
5.4.1 <i>Damage progression characteristics</i>	145
5.4.2 <i>Failure modes of impacted pier</i>	146
5.4.3 <i>Damage indices</i>	152
5.4.3.1 <i>Damage index based on the pier deflection</i>	152
5.4.3.2 <i>Damage index based on the eroded internal energy</i>	155
5.4.3.3 <i>Damage index based on the axial load-carrying capacity</i>	156
5.5 <i>Conclusions</i>	157
References	158
6 Simply-supported RC beams subjected to combined impact-blast loads	161
6.1 <i>Introduction</i>	161
6.2 <i>Theoretical background</i>	163
6.3 <i>FE modeling of RC beam</i>	167
6.3.1 <i>Material model</i>	168
6.3.2 <i>Strain rate effect</i>	170
6.3.3 <i>Validation of FE models under impact and blast loads</i>	171
6.3.4 <i>Applying the combined loads</i>	174
6.4 <i>Results and discussion</i>	175
6.4.1 <i>Damage index (vulnerability assessment)</i>	175
6.4.2 <i>Influence of loading sequence</i>	176

6.4.3	<i>Influence of time lag between impact and blast loads</i>	179
6.4.4	<i>Influence of beam depth</i>	180
6.4.5	<i>Influence of beam span length</i>	184
6.4.6	<i>Influence of beam longitudinal reinforcement</i>	186
6.4.7	<i>Influence of beam transverse reinforcement</i>	188
6.5	<i>Conclusions</i>	188
	<i>References</i>	189
7	Loading rate effect on the responses of beam subjected to combined loads	193
7.1	<i>Introduction</i>	193
7.2	<i>Theoretical background</i>	195
7.2.1	<i>RC beams under impact loads</i>	195
7.2.2	<i>RC beams under blast loads</i>	196
7.3	<i>FE modeling of RC beams and combined loading methodology</i>	198
7.4	<i>Results and discussion</i>	200
7.4.1	<i>RC beams under impact loads</i>	200
7.4.2	<i>RC beams under combined loads</i>	203
7.4.3	<i>Vulnerability assessment of RC beams under combined loadings</i>	204
7.4.3.1	<i>Effects of the loading sequence</i>	205
7.4.3.2	<i>Effects of the time lag</i>	209
7.4.3.3	<i>Effects of reinforcement configuration</i>	214
7.5	<i>Conclusions</i>	215
	<i>References</i>	215
8	RC columns subjected to the combination of impact and blast loads	219
8.1	<i>Introduction</i>	219
8.2	<i>Methodology of analysis</i>	221
8.2.1	<i>Damage index</i>	222
8.2.2	<i>Simplified model for calculating the length of plastic hinge</i>	223
8.3	<i>FE modeling and validation of RC columns under impact and blast loads</i>	225
8.4	<i>Results and discussion</i>	230
8.4.1	<i>Effects of loading location</i>	231
8.4.2	<i>Effects of loading sequence</i>	235
8.4.3	<i>Effects of time lag</i>	237
8.4.4	<i>Effects of axial load ratio (ALR)</i>	243
8.4.5	<i>Effects of impact velocity</i>	245
8.5	<i>Conclusions</i>	251
	<i>References</i>	253
9	Bridge pier subjected to vessel impact combined with blast loads	257
9.1	<i>Introduction</i>	257
9.2	<i>FE modeling of vessels and bridge pier</i>	261

9.2.1	<i>FE modeling of vessels</i>	261
9.2.2	<i>FE modeling of bridge</i>	263
9.2.3	<i>Validation of FE models</i>	267
9.3	<i>Methodology and limitations</i>	276
9.4	<i>Failure modes of bridge pier under combined loads</i>	279
9.5	<i>Vulnerability assessment of bridge pier under combined loads</i>	283
9.5.1	<i>Simplified FE model of the pier</i>	284
9.5.2	<i>Damage indices</i>	285
9.5.3	<i>Influence of the loading location</i>	288
9.5.4	<i>Influence of impact velocity</i>	297
9.5.5	<i>Influence of time lag</i>	302
9.6	<i>Conclusions</i>	305
	<i>References</i>	306
10	Summary	309
10.1	<i>Summary of the current work</i>	309
10.2	<i>Recommendation for future work</i>	311
	<i>Appendix A</i>	313
	<i>Index</i>	315