
Contents

<i>Preface</i>	xiii
1 Introduction	2
1.1 <i>Introduction</i> 2	
1.2 <i>Why an earthworks book</i> 4	
1.3 <i>A short history of earthworks</i> 8	
1.4 <i>Ground models</i> 12	
1.4.1 Geological model 14	
1.4.2 Geotechnical model 16	
1.4.3 Earthworks model 20	
1.5 <i>Earthworks cost</i> 24	
1.6 <i>The business of geotechnical engineering</i> 26	
1.7 <i>Case study – Geological model for a deep basement excavation</i> 28	
1.8 <i>Summary</i> 30	
2 Site investigation	36
2.1 <i>Influence of the ground</i> 36	
2.2 <i>Planning and staging of a SI</i> 38	
2.2.1 Depth of SI 42	
2.2.2 Extent of investigation 44	
2.2.3 Sampling 44	
2.3 <i>Field work of SI</i> 46	
2.3.1 Deep investigation 50	
2.3.2 Shallow investigation and subgrade assessment 52	
2.4 <i>Testing variation</i> 54	
2.4.1 Shallow foundations 54	
2.4.2 Deep foundations 58	
2.4.3 Counting blows 58	
2.4.4 Energy transfer 62	
2.4.5 <i>N</i> -value strength varies with geology 64	
2.4.6 High and low SPT values 66	
2.5 <i>Case study 1 – No geotechnical investigation</i> 66	
2.6 <i>Case study 2 – Auger and cored drilling</i> 68	
2.7 <i>Summary</i> 70	

3 Site safety	74
3.1 Site-safety awareness	74
3.2 Failure of trenches	76
3.2.1 Temporary supports and slopes	80
3.3 General safety considerations	82
3.4 Operating plant	84
3.5 Safe work method statement	86
3.6 Case study 1 – Sink hole failure from pile installation	88
3.7 Case study 2 – Incorrect as-constructed services drawings	90
3.8 Case study 3 – Slope failures	92
3.9 Summary	92
4 Phase relationships and soil classification	94
4.1 Soil elements and classification	94
4.2 Phase definitions	96
4.3 Soil types	100
4.3.1 Water retention	100
4.4 Soil classification	100
4.4.1 Gradings	102
4.4.2 Atterberg limits	108
4.5 Engineering use chart	112
4.6 Case study – Gradings pre and post compaction	114
4.7 Summary	114
5 Theory of compaction	116
5.1 Introduction	116
5.2 Mechanics of densification	118
5.2.1 Theory of compaction	118
5.2.2 Compactive effort	120
5.2.3 Compaction curves for different materials	128
5.3 Strength from compaction	130
5.4 Sample preparation	130
5.5 Field versus laboratory compaction	134
5.5.1 Oversize correction	138
5.6 CBR test	140
5.7 Compactor performance in the field	140
5.8 Case study 1 – Importance of curing times	142
5.9 Case study 2 – Representative sampling	142
5.10 Summary	144
6 Soil and rock strength	148
6.1 Introduction to soil and rock types	148
6.2 Rock types	150
6.3 Soil types	150

6.4	<i>Types of soil strength</i>	152
6.4.1	Critical strength	156
6.4.2	Residual strength	156
6.4.3	Compaction induced strength	156
6.5	<i>Classification of clay strength</i>	158
6.6	<i>Classification of strength of granular soils</i>	160
6.6.1	Standard penetration test	164
6.6.2	Dynamic cone penetration test	164
6.6.3	Cone penetration test	166
6.7	<i>California bearing ratio</i>	168
6.7.1	Interaction with underlying layer	170
6.7.2	Laboratory versus field conditions	172
6.7.3	CBR soaking	172
6.7.4	CBR from DCP test	174
6.8	<i>Various methods of subgrade investigation</i>	176
6.8.1	Plate load test	176
6.8.2	DCP to estimate modulus	178
6.8.3	LFWD to estimate modulus	180
6.9	<i>Rock properties</i>	182
6.9.1	Rock weathering	182
6.9.2	Rock strength	184
6.9.3	Rock modulus	184
6.10	<i>Degradable materials</i>	188
6.11	<i>Case study 1 – CBR subgrade assessment</i>	192
6.12	<i>Case study 2 – SPT field values</i>	194
6.13	<i>Summary</i>	196

7	The compaction process	198
7.1	<i>Prequel to compaction</i>	198
7.2	<i>Principles of compaction equipment</i>	200
7.2.1	Number of passes and lift thickness	204
7.2.2	Travel speed	208
7.3	<i>Targeted moisture content</i>	210
7.3.1	Water required for compaction	214
7.4	<i>Productivity of compaction plant</i>	216
7.5	<i>Influence depth</i>	218
7.6	<i>Compaction equipment</i>	220
7.6.1	Small-sized equipment	220
7.6.2	Large-sized equipment	222
7.6.3	Impact compaction	224
7.7	<i>Deep compaction</i>	228
7.8	<i>Case study 1 – Targeted field moisture ratios</i>	228
7.9	<i>Case study 2 – Laboratory testing variation</i>	230
7.10	<i>Case study 3 – Effect of roller type: dynamic force monitoring</i>	232
7.11	<i>Summary</i>	236

8 Excavations and bulking	240
8.1 <i>Introduction</i> 240	
8.2 <i>Definition of rock in contract documents</i> 242	
8.3 <i>Excavation equipment</i> 244	
8.4 <i>Open excavation assessment</i> 248	
8.4.1 Excavation assessment based on rock mass rating 250	
8.4.2 Excavation assessment based on seismic wave velocities 250	
8.4.3 Excavation assessment based on various ratings 250	
8.4.4 Excavation assessment based on production rates 250	
8.5 <i>Equipment balance</i> 252	
8.5.1 Plant output 258	
8.6 <i>Confined space excavation assessment</i> 258	
8.6.1 Diggability index 258	
8.6.2 Trench, shaft, and tunnel excavations in rock 262	
8.7 <i>Bulking factors</i> 262	
8.8 <i>Case study 1 – Unit weight of excavated material placed as fill</i> 266	
8.9 <i>Case study 2 – Variation of material through a cutting</i> 268	
8.10 <i>Summary</i> 270	
9 Slope stability in cuttings and embankments	272
9.1 <i>Introduction</i> 272	
9.2 <i>Causes of slope failure</i> 272	
9.3 <i>Quantitative risk analysis</i> 274	
9.3.1 Landslides as compared with other hazard events 276	
9.3.2 The perception of risk 278	
9.3.3 Case study of landslides with varying consequences 280	
9.4 <i>Factors of safety</i> 284	
9.4.1 Factors of safety for new slopes 284	
9.4.2 Factors of safety for existing slopes 286	
9.4.3 Factors of safety based on consequences class 288	
9.4.4 Factors of safety for dam walls 288	
9.5 <i>Typical slopes for cuttings and embankments</i> 290	
9.5.1 Rock slopes 294	
9.5.2 Rock cut stabilisation measures 296	
9.6 <i>Soil erodibility</i> 298	
9.6.1 Erodibility hierarchy 300	
9.6.2 Erosion control 300	
9.6.3 Benching of slopes 302	
9.7 <i>Case study 1 – Mechanisms of landslide failures</i> 302	
9.8 <i>Case study 2 – Riverbank failure</i> 304	
9.9 <i>Case study 3 – Landslide zonation by GIS analysis</i> 304	
9.10 <i>Summary</i> 308	

10 Expansive soils	310
10.1 <i>Introduction</i> 310	
10.1.1 <i>Pavement design and distress</i> 312	
10.2 <i>Cost of damage</i> 316	
10.3 <i>Mechanical damage from tree roots</i> 318	
10.4 <i>Volume change behaviour</i> 320	
10.4.1 <i>Index tests</i> 322	
10.4.2 <i>Embankments and cuttings</i> 324	
10.5 <i>Calculation of movement using the shrink – swell index</i> 326	
10.6 <i>Weighted plasticity index (WPI) for residual soils</i> 328	
10.7 <i>Soil suction and saturation</i> 332	
10.8 <i>Relationship of WPI with CBR test</i> 338	
10.9 <i>Compaction</i> 344	
10.10 <i>Design CBR</i> 348	
10.11 <i>Equilibrium moisture content compaction</i> 350	
10.11.1 <i>Index parameters which indicate the seasonal changes</i> 352	
10.12 <i>Swell pressure tests for assessment of stable zone</i> 354	
10.13 <i>Zonal use of expansive clay</i> 356	
10.14 <i>Effect of trees on ground movement</i> 358	
10.15 <i>Case study 1 – Long-term monitoring of existing embankments</i> 360	
10.15.1 <i>Trial embankment</i> 362	
10.15.2 <i>Construction monitoring</i> 364	
10.15.3 <i>Key considerations</i> 366	
10.16 <i>Case study 2 – Effect of desiccation cracks on modulus</i> 366	
10.17 <i>Summary</i> 368	
11 Subgrades	370
11.1 <i>Introduction</i> 370	
11.2 <i>Sampling survey</i> 372	
11.3 <i>Subgrade considerations</i> 374	
11.3.1 <i>Site investigation versus construction requirements</i> 376	
11.4 <i>Analytical proof of subgrade depth</i> 378	
11.4.1 <i>Boussinesq analysis</i> 380	
11.4.2 <i>Finite element analysis</i> 380	
11.4.3 <i>Hertz contact mechanics</i> 382	
11.5 <i>Proof rolling for subgrade assessment</i> 386	
11.5.1 <i>Tyred equipment for proof rolling tests</i> 388	
11.5.2 <i>Rollers for proof rolling tests</i> 388	
11.6 <i>Rail track permissible pressure on the formation</i> 388	
11.7 <i>Case study – Subgrades for heavy loads</i> 390	
11.8 <i>Summary</i> 392	

12 Improved subgrades	396
12.1 <i>Introduction</i> 396	
12.2 <i>Remove and replace</i> 400	
12.2.1 Design basis for R&R 402	
12.3 <i>In-situ stabilisation</i> 404	
12.3.1 Lime stabilisation 406	
12.3.2 Cement stabilisation 408	
12.3.3 Soil stabilisation with bitumen 410	
12.4 <i>Geosynthetics</i> 410	
12.4.1 Geotextiles for separation and reinforcement 412	
12.4.2 Establishing geotextile strength class 414	
12.4.3 Geotextile strength class for horizontal and vertical placement 414	
12.4.4 Establishing geotextile strength class adjacent to walls and slopes 416	
12.4.5 Geotextile overlap 418	
12.4.6 Geogrids for subgrade improvement 418	
12.4.7 Bearing capacity factors using geotextiles 418	
12.4.8 Modulus improvements with geosynthetic inclusions 420	
12.4.9 Geotextiles as a soil filter 420	
12.5 <i>Working platforms</i> 422	
12.5.1 Subgrade testing 424	
12.5.2 BR470 design considerations 424	
12.5.3 Adjacent to a slope 426	
12.5.4 Platform maintenance 426	
12.5.5 Track bearing pressure 428	
12.5.6 Platform material 428	
12.5.7 Design alternative using geotextiles 430	
12.6 <i>Case study 1 – Adjacent to a creek</i> 430	
12.7 <i>Case study 2 – Dredged sand subgrade over very soft clays</i> 432	
12.7.1 Approach 436	
12.7.2 Track pressure loads 438	
12.7.3 Geotechnical parameters 438	
12.7.4 Risk based analysis 440	
12.7.5 Acceptable displacement criterion 442	
12.7.6 Allowable stress criterion 442	
12.7.7 Analysis summary 444	
12.7.8 Proof rolling deflections 444	
12.8 <i>Case study 3 – Lime stabilisation and a reinforced soil slope</i> 446	
12.9 <i>Summary</i> 448	
13 Design considerations	450
13.1 <i>Introduction</i> 450	
13.2 <i>Embankment considerations</i> 456	
13.3 <i>Factors of safety for slopes</i> 460	
13.3.1 Factors of safety for new and existing slopes 462	
13.4 <i>Probability of failure</i> 462	

13.5	<i>Stable slope batters</i>	464
13.6	<i>Embankment foundations</i>	464
13.7	<i>Foundation movements</i>	468
13.7.1	Immediate to total settlements	468
13.7.2	Free surface movements for light buildings	468
13.7.3	Free surface movements for road pavements	468
13.7.4	Tolerable deflection for proof rolling	470
13.7.5	Rail track deformations	470
13.7.6	Road surface movements on compressible soils	470
13.7.7	Differential settlement of reinforced soil structures	472
13.8	<i>Design value – risk based</i>	472
13.9	<i>Typical CBR values</i>	476
13.10	<i>Applying CBR values</i>	480
13.11	<i>Design interface with hydraulics</i>	482
13.12	<i>Case study 1 – Back-analysis of a failed slope</i>	484
13.13	<i>Case study 2 – Design detailing and analysis input</i>	490
13.14	<i>Summary</i>	494
14	Construction considerations	500
14.1	<i>Introduction</i>	500
14.2	<i>Quality control</i>	502
14.3	<i>Specifications</i>	504
14.3.1	Characteristic values	508
14.3.2	Frequency of testing	512
14.3.3	Specification development	512
14.3.4	Effect of climate and geology	518
14.3.5	Effect of traffic	518
14.4	<i>Blending</i>	520
14.5	<i>Rock specifications for roadway embankment fills</i>	522
14.6	<i>Rock durability</i>	526
14.7	<i>Ballast grading</i>	530
14.8	<i>Backfill for buried pipes</i>	532
14.9	<i>Observation and instrumentation</i>	534
14.10	<i>The zero air voids line</i>	538
14.11	<i>Compaction specifications</i>	540
14.12	<i>Non-density quality control</i>	546
14.13	<i>Case study 1 – Uneven rock surface</i>	548
14.14	<i>Case study 2 – Earthworks tender considerations</i>	550
14.15	<i>Case study 3 – Spatial variation and blending</i>	552
14.16	<i>Summary</i>	554
<i>Permissions</i>		558
<i>Abbreviations</i>		563
<i>References</i>		567
<i>Index</i>		583