

Contents

Preface

xiii

1 Characteristic Features of Surfactants

1

A	Conditions Under Which Interfacial Phenomena and Surfactants Become Significant	2
B	General Structural Features and Behavior of Surfactants	2
1	General Use of Charge Types	4
2	General Effects of the Nature of the Hydrophobic Group	5
I	Characteristic Features and Uses of Commercially Available Surfactants	6
I.A	Anionics	7
1	Carboxylic Acid Salts	7
2	Sulfonic Acid Salts	8
3	Sulfuric Acid Ester Salts	12
4	Phosphoric and Polyphosphoric Acid Esters	15
5	Fluorinated Anionics	15
I.B	Cationics	16
1	Long-Chain Amines and Their Salts	17
2	Acylated Diamines and Polyamines and Their Salts	17
3	Quaternary Ammonium Salts	18
4	Polyoxyethylenated (POE) Long-Chain Amines	19
5	Quaternized POE Long-Chain Amines	19
6	Amine Oxides	19
I.C	Nonionics	20
1	POE Alkylphenols, Alkylphenol "Ethoxylates"	20
2	POE Straight-Chain Alcohols, Alcohol "Ethoxylates"	21
3	POE Polyoxypropylene glycols	22
4	POE Mercaptans	22
5	Long-Chain Carboxylic Acid Esters	23
6	Alkanolamine "Condensates," Alkanolamides	24
7	Tertiary Acetylenic Glycols and Their "Ethoxylates"	24
8	POE Silicones	25
9	<i>N</i> -Alkylpyrrolidones	25

10	Alkylpolyglycosides	26
I.D	Zwitterionics	26
1	pH-Sensitive Zwitterionics	26
2	pH-Insensitive Zwitterionics	28
I.E	Newer Surfactants Based Upon Renewable Raw Materials	28
1	α -Sulfofatty Acid Methyl Esters (SME)	28
2	Acylated Aminoacids	29
3	N-Acyl L-Glutamates (AG)	29
4	N-Acyl Glycinates	29
5	N-Acyl DL-Alaninates	30
6	Other Acylated Aminoacids	30
7	Nopol Alkoxylates	30
II	Environmental Effects of Surfactants	31
II.A	Surfactant Biodegradability	31
II.B	Surfactant Toxicity To and Bioconcentration in Marine Organisms	31
III	Some Useful Generalizations	32
	References	33
	Problems	33

2 Adsorption of Surface-Active Agents at Interfaces: The Electrical Double Layer

34

I	The Electrical Double Layer	35
II	Adsorption at the Solid-Liquid Interface	38
II.A	Mechanisms of Adsorption and Aggregation	39
II.B	Adsorption Isotherms	42
1	The Langmuir Adsorption Isotherm	44
II.C	Adsorption from Aqueous Solution Onto Adsorbents with Strongly Charged Sites	47
1	Ionic Surfactants	47
2	Nonionic Surfactants	52
3	pH Change	53
4	Ionic Strength	53
5	Temperature	53
II.D	Adsorption from Aqueous Solution Onto Nonpolar, Hydrophobic Adsorbents	54
II.E	Adsorption from Aqueous Solution Onto Polar Adsorbents without Strongly Charged Sites	56
II.F	Effects of Adsorption from Aqueous Solution on the Surface Properties of the Solid Adsorbent	57
1	Substrates with Strongly Charged Sites	57
2	Nonpolar Adsorbents	58

II.G	Adsorption from Nonaqueous Solution	58
II.H	Determination of the Specific Surface Areas of Solids	59
III	Adsorption at the Liquid-Gas (<i>L/G</i>) and Liquid-Liquid (<i>L/L</i>) Interfaces	59
III.A	The Gibbs Adsorption Equation	60
III.B	Calculation of Surface Concentrations and Area per Molecule at the Interface By Use of the Gibbs Equation	62
III.C	Effectiveness of Adsorption at the <i>L/G</i> and <i>L/L</i> Interfaces	64
III.D	The Szyszkowski, Langmuir, and Frumkin Equations	82
III.E	Efficiency of Adsorption at the <i>L/G</i> and <i>L/L</i> Interfaces	83
III.F	Calculation of Thermodynamic Parameters of Adsorption at the <i>L/G</i> and <i>L/L</i> Interfaces	87
III.G	Adsorption from Mixtures of Two Surfactants	95
	References	97
	Problems	103

3 Micelle Formation by Surfactants 105

I	The Critical Micelle Concentration (CMC)	105
II	Micellar Structure and Shape	107
II.A	The Packing Parameter	107
II.B	Surfactant Structure and Micellar Shape	109
II.C	Liquid Crystals	110
III	Micellar Aggregation Numbers	113
IV	Factors Affecting the Value of the CMC in Aqueous Media	120
IV.A	Structure of the Surfactant	121
1	The Hydrophobic Group	121
2	The Hydrophobic Group	138
3	The Counterion in Ionic Surfactants: Degree of Binding to the Micelle	139
4	Empirical Equations	144
IV.B	Electrolyte	144
IV.C	Organic Additives	146
1	Class I Materials	146
2	Class II Materials	147
IV.D	The Presence of a Second Liquid Phase	148
IV.E	Temperature	149
V	Micellization in Aqueous Solution and Adsorption at the Aqueous Solution-Air or Aqueous Solution-Hydrocarbon Interface	149
V.A.	The CMC/ C_{20} ratio	149
VI	CMCs in Nonaqueous Media	157
VII	Equations for the CMC Based on Theoretical Considerations	157
VIII	Thermodynamic Parameters of Micellization	161

IX	Mixed Micelle Formation in Mixtures of Two Surfactants	167
	References	168
	Problems	175
4	Solubilization by Solutions of Surfactants: Micellar Catalysis	178
I	Solubilization in Aqueous Media	179
	I.A Locus of Solubilization	179
	I.B Factors Determining the Extent of Solubilization	181
	1 Structure of the Surfactant	182
	2 Structure of the Solubilizate	184
	3 Effect of Electrolyte	185
	4 Effect of Monomeric Organic Additives	185
	5 Effect of Polymeric Organic Additives	186
	6 Mixed Anionic-Nonionic Micelles	187
	7 Effect of Temperature	188
	8 Hydrotropy	189
	I.C Rate of Solubilization	190
II	Solubilization in Nonaqueous Solvents	190
	II.A Secondary Solubilization	192
III	Some Effects of Solubilization	193
	III.A Effect of Solubilization on Micellar Structure	193
	III.B Change in the Cloud Points of Aqueous Solutions of Nonionic Surfactants	193
	III.C Reduction of the CMC	197
	III.D Miscellaneous Effects of Solubilization	198
IV	Micellar Catalysis	198
	References	202
	Problems	206
5	Reduction of Surface and Interfacial Tension by Surfactants	208
I	Efficiency in Surface Tension Reduction	212
II	Effectiveness in Surface Tension Reduction	214
	II.A The Krafft Point	214
	II.B Interfacial Parameter and Chemical Structural Effects	215
III	Liquid-Liquid Interfacial Tension Reduction	229
	III.A Ultralow Interfacial Tension	230
IV	Dynamic Surface Tension Reduction	234
	IV.A Dynamic Regions	234
	IV.B Apparent Diffusion Coefficients of Surfactants	237
	References	238
	Problems	242

6 Wetting and Its Modification by Surfactants	243
I Wetting Equilibria	243
I.A Spreading Wetting	243
1 The Contact Angle	246
2 Measurement of the Contact Angle	247
I.B Adhesional Wetting	249
I.C Immersional Wetting	251
I.D Adsorption and Wetting	253
II Modification of Wetting by Surfactants	255
II.A General Considerations	255
II.B Hard Surface (Equilibrium) Wetting	256
II.C Textile (Nonequilibrium) Wetting	258
II.D Effect of Additives	268
III Synergy in Wetting by Mixtures of Surfactants	269
IV Superspreading (Superwetting)	270
References	273
Problems	275
7 Foaming and Antifoaming by Aqueous Solutions of Surfactants	277
I Theories of Film Elasticity	278
II Factors Determining Foam Persistence	282
II.A Drainage of Liquid in the Lamellae	282
II.B Diffusion of Gas Through the Lamellae	283
II.C Surface Viscosity	284
II.D The Existence and Thickness of the Electrical Double Layer	284
III The Relation of Surfactant Chemical Structure to Foaming in Aqueous Solution	285
III.A Efficiency as a Foaming Agent	285
III.B Effectiveness as a Foaming Agent	287
III.C Low-Foaming Surfactants	293
IV Foam-Stabilizing Organic Additives	294
V Antifoaming	297
VI Foaming of Aqueous Dispensions of Finely Divided Solids	298
References	299
Problems	301
8 Emulsification by Surfactants	303
I Macroemulsions	304
I.A Formation	305
I.B Factors Determining Stability	305

1	Physical Nature of the Interfacial Film	306
2	Existence of an Electrical or Steric Barrier to Coalescence on the Dispersed Droplets	308
3	Viscosity of the Continuous Phase	309
4	Size Distribution of Droplets	309
5	Phase Volume Ratio	309
6	Temperature	310
I.C	Inversion	311
I.D	Multiple Emulsions	313
I.E	Theories of Emulsion Type	314
1	Qualitative Theories	314
2	Kinetic Theory of Macroemulsion Type	316
II	Microemulsions	317
III	Nanoemulsions	319
IV	Selection of Surfactants as Emulsifying Agents	320
IV.A	The HLB Method	321
IV.B	The PIT Method	324
IV.C	The HLD Method	326
V	Demulsification	327
	References	327
	Problems	330
9	Dispersion and Aggregation of Solids in Liquid Media by Surfactants	332
I	Interparticle Forces	332
I.A	Soft (electrostatic) and van der Waals Forces: DLVO Theory	332
1	Limitations of the DLVO Theory	338
I.B	Steric Forces	339
II	Role of the Surfactant in the Dispersion Process	341
II.A	Wetting of the Powder	342
II.B	Deaggregation or Fragmentation of Particle Clusters	342
II.C	Prevention of Reaggregation	342
III	Coagulation or Flocculation of Dispersed Solids by Surfactants	343
III.A	Neutralization or Reduction of the Potential at the Stern Layer of the Dispersed Particles	343
III.B	Bridging	344
III.C	Reversible Flocculation	344
IV	The Relation of Surfactant Chemical Structure to Dispersing Properties	345
IV.A	Aqueous Dispersions	345
IV.B	Nonaqueous Dispersions	349

References 350

Problems 351

10 Detergency and Its Modification by Surfactants 353

I Mechanisms of the Cleaning Process 353

I.A Removal of Soil from Substrate 354

1 Removal of Liquid Soil 355

2 Removal of Solid Soil 357

I.B Suspension of the Soil in the Bath and Prevention of Redeposition 359

1 Solid Particulate Soils: Formation of Electrical and Steric Barriers; Soil Release Agents 359

2 Liquid Oily Soil 359

I.C Skin Irritation 361

I.D Dry Cleaning 361

II Effect of Water Hardness 362

II.A Builders 363

II.B Lime Soap Dispersing Agents 364

III Fabric Softeners 365

IV The Relation of the Chemical Structure of the Surfactant to Its Detergency 367

IV.A Effect of Soil and Substrate 367

1 Oily Soil 367

2 Particulate Soil 370

3 Mixed Soil 370

IV.B Effect of the Hydrophobic Group of the Surfactant 371

IV.C Effect of the Hydrophilic Group of the Surfactant 372

IV.D Dry Cleaning 374

References 374

Problems 378

11 Molecular Interactions and Synergism in Mixtures of Two Surfactants 379

I Evaluation of Molecular Interaction Parameters 380

I.A Notes on the Use of Equations 11.1–11.4 382

II Effect of Chemical Structure and Molecular Environment on Molecular Interaction Parameters 384

III Conditions for the Existence of Synergism 397

III.A Synergism or Antagonism (Negative Synergism) in Surface or Interfacial Tension Reduction Efficiency 398

III.B Synergism or Antagonism (Negative Synergism) in Mixed Micelle Formation in Aqueous Medium 400

III.C	Synergism or Antagonism (Negative Synergism) in Surface or Interfacial Tension Reduction Effectiveness	401
III.D	Selection of Surfactants Pairs for Optimal Interfacial Properties	405
IV	The Relation between Synergism in Fundamental Surface Properties and Synergism in Surfactant Applications	405
	References	410
	Problems	413
12	Gemini Surfactants	415
I	Fundamental Properties	415
II	Interaction with Other Surfactant	420
III	Performance Properties	423
	References	424
	Problems	426
Answers to Problems		428
Index		433