
CONTENTS

Preface

xi

1	Introduction	1
1.1	Thermal Transport	1
1.2	An Example	3
1.3	Numerical Approach	4
1.4	Outline and Scope of the Book	7
Part 1	Mathematical Background	11
2	Governing Equations	13
2.1	Classification	13
2.2	Representative Differential Equations from Heat Transfer	14
2.3	Boundary and Initial Conditions	16
2.4	Integral Forms	18
2.5	Numerical Solution	21
References		22
Problems		22
3	Finite Differences	25
3.1	Basic Concepts	26
3.1.1	Direct Approximation Approach	27
3.1.2	Taylor Series Approach and Accuracy	29
3.1.3	Control Volume Approach and Conservation	32
3.1.4	Numerical Considerations	34
3.1.4.1	Total Truncation Error	34

3.1.4.2	Discretization and Roundoff Errors	35
3.1.4.3	Convergence	36
3.1.4.4	Numerical Stability and the Equivalence Theorem	37
3.2	Steady-State Diffusion	38
3.2.1	Discretization	38
3.2.2	Solution of Simultaneous Equations	41
3.2.2.1	Iterative Methods	42
3.2.2.2	Direct Methods	46
3.3	Transient Diffusion	47
3.3.1	Two-Level Time Discretization	48
3.3.2	Matrix Stability Analysis	49
3.3.3	Fourier Series Stability Analysis	53
3.3.4	Other Explicit and Implicit Schemes	55
References		56
Problems		56
4	Finite Elements	59
4.1	Basic Concepts	60
4.1.1	Discretization	61
4.1.2	Interpolation Functions	61
4.1.3	Integral Representations and Galerkin's Method	62
4.1.4	Assembly	63
4.1.5	Elements	63
4.1.6	Condensation and Substructuring	64
4.2	Steady-State Diffusion	66
4.2.1	Matrix Equations with Boundary Conditions	66
4.2.2	One-Dimensional Diffusion	69
4.2.3	Two-Dimensional Diffusion	70
4.3	Transient Diffusion	72
4.3.1	The Matrix System	73
4.3.2	Finite Differences in Time	73
4.3.3	Diagonalization	75
4.3.4	Transient One-Dimensional Diffusion	75
References		76
Problems		77
Part 2	Simulation of Transport Processes	79
5	Numerical Methods for Conduction Heat Transfer	81
5.1	Governing Equations	82
5.2	Numerical Solution of Steady-State Conduction	83
5.2.1	One-Dimensional Conduction	84
5.2.1.1	Basic Equations	84

5.2.1.2	Finite Difference Approximation of the Boundary Conditions	86
5.2.1.3	An Example: Numerical Solution of Heat Transfer in an Extended Surface	88
5.2.1.4	Runge-Kutta Methods	90
5.2.2	Multidimensional Steady-State Conduction	93
5.2.2.1	Finite Difference Formulation	95
5.2.2.2	Solution: Iterative and Direct Methods	100
5.2.2.3	Improvement in Accuracy of Numerical Results	103
5.2.2.4	Finite Element Formulation	105
5.2.3	Variable Property and Other Considerations	106
5.3	Numerical Solution of Unsteady-State Conduction	117
5.3.1	One-Dimensional Unsteady-State Conduction	118
5.3.1.1	FTCS Explicit Method	119
5.3.1.2	Other Methods	125
5.3.2	Numerical Approximation of Lumped Mass and Semi-infinite Solids	128
5.3.3	Multidimensional Unsteady-State Conduction	131
5.3.4	Numerical Methods for Time-Varying Boundary Conditions	134
5.3.5	Property Variation	137
5.3.6	Finite Element Solution	139
5.4	Summary	141
	References	142
	Problems	143
6	Numerical Methods for Convection Heat Transfer	149
6.1	Governing Equations	151
6.2	Computation of Forced Convection with Constant Fluid Properties	153
6.2.1	Inviscid Flow: Introduction to Stream Function and Vorticity	153
6.2.2	Equations for Viscous Flow: Primitive and Derived Variables	160
6.2.3	Linear Viscous Flow (Creeping Flow)	162
6.2.4	Computation of Boundary Layer Flows	166
6.2.4.1	Similarity Solution: Ordinary Differential Equations	166
6.2.4.2	Finite Difference Approach	170
6.2.5	Numerical Solution of the Full Equations	175
6.2.5.1	Central Differencing	177
6.2.5.2	Upwind and Other Differencing Schemes	178
6.2.5.3	Other Numerical Methods and Considerations	180

6.2.5.4	Primitive Variables Approach	183
6.2.6	Finite Difference Considerations of the Conservative Form	187
6.2.7	Energy Equation	189
6.2.7.1	Numerical Formulation	190
6.2.7.2	Boundary Conditions	193
6.2.7.3	Numerical Solution	198
6.2.8	Numerical Solution of Turbulent Flows	204
6.3	Computation of Natural Convection Flow and Transport	210
6.3.1	Similarity Solutions	212
6.3.2	Finite Difference Methods	217
6.4	Convection with Variable Fluid Properties	224
6.5	Finite Element Methods	227
6.5.1	Discretization and Interpolation Functions	227
6.5.2	Integral Representation	228
6.5.3	Element Equations and Assembly	229
6.5.4	Solution	231
6.5.5	Comparison of Finite Element and Finite Difference Methods	232
6.6	Summary	232
	References	233
	Problems	237
7	Numerical Methods for Radiation Heat Transfer	243
7.1	Basic Concepts	244
7.2	Numerical Techniques for Enclosures with Diffuse-Gray Surfaces	247
7.2.1	Radiosity Method	247
7.2.2	Absorption Factor Method	251
7.2.3	Additional Considerations	252
7.2.3.1	Computation of View Factors	252
7.2.3.2	Temperature Dependence of Surface Properties	253
7.2.3.3	Spectral Variation	255
7.3	Nonuniform Irradiation and Emission: Discrete Integral Equations	256
7.4	Numerical Solution of Radiation in the Presence of Other Modes	260
7.4.1	Combined Modes at Boundaries: Nonparticipating Media	260
7.4.2	Participating Media	263
7.5	Monte Carlo Method	267
7.6	Summary	277
	References	278
	Problems	279

Part 3	Combined Modes and Process Applications	283
8	Applications of Computational Heat Transfer	285
8.1	Numerical Simulation of Thermal Systems in Manufacturing	286
8.1.1	Heat Treatment: Temperature Regulation	286
8.1.2	Surface Treatment: Semi-infinite Approximation	289
8.1.3	Continuously Moving Materials: Moving Boundary Effects	292
8.1.4	Melting and Solidification: Phase Change Considerations	294
8.2	Numerical Simulation of Environmental Heat Transfer Problems	301
8.2.1	Cooling Ponds: Periodic Processes	302
8.2.2	Recirculating Flows in Enclosed Spaces	307
8.2.3	Free Boundary Flows and Other Problems	313
8.3	Computer Simulation and Computer-Aided Design of Thermal Systems	321
8.3.1	General Approach	322
8.3.2	Example of Computer Simulation of a Thermal System	323
References		328
Problems		331

Appendices

A	Sample Computer Programs	335
A.1	Tridiagonal Matrix Algorithm	335
A.2	Successive Over-relaxation (SOR) Method	337
A.3	Crank-Nicolson Method	338
A.4	Runge-Kutta Method	344
A.5	Gauss-Jordan Elimination Method	348
B	Material Properties	351
Nomenclature		357
Index		361