

CONTENTS

1. SAMPLING THEORY	1
Probability Distributions	1
Standard Normal Variate	6
Populations and Samples	7
Student's <i>t</i> -Distribution	10
Binomial Distribution	12
Bias	13
Estimation of μ	14
Estimation of σ^2	14
Analytical Applications	15
Minimizing the Variances of Sampling and Analysis	17
References	21
Suggested Readings	21
2. FUNDAMENTALS OF EXPERIMENTAL DESIGN AND OPTIMIZATION	23
Assessment of Performance	24
Comparative Experiments	27
Paired Observations	34
Randomized Blocks	36
Latin Squares	41
Factorial Designs	44
ANOVA for Linear Models	50
Response Surfaces	54
References	63
Suggested Readings	63
3. SIGNAL DETECTION AND MANIPULATION	65
Signal Detection	68
Point Estimation of the Detection Limit	76

Point Estimation of the Detection Limit by <i>t</i> -Tests	79
Signal-to-noise ratio	80
<i>t</i> -test based on the difference between individual measurements ($x_A - x_B$)	82
The Wilcoxon Test	84
Precision at the Detection Limit	85
Increasing the S/N Ratio	86
Optimization	86
Signal averaging	86
Boxcar integration	87
Signal filtering and modulation	88
Multiplex spectroscopy	89
Hadamard transform spectroscopy	91
Fourier transform spectroscopy	92
Decoding $f(t)$ [computing $F(\nu)$]	94
Fast Fourier transform	95
Signal Manipulation	96
Curve fitting	97
Curve fitting of nonlinear functions	97
Estimating peak parameters	98
Estimating the area under the peak	100
Smoothing of data	102
Boxcar averaging	102
Moving window averaging	103
Least-squares polynomial smoothing	104
Fourier transform smoothing	108
Differentiation of the signal	109
References	112
Suggested Readings	115
4. CALIBRATION AND CHEMICAL ANALYSIS	119
Comparison with Standards	120
Constructing a Calibration Curve	120
Response function	121
Linear calibration	122
Examination of the Residuals	125

Utilizing the calibration curve for chemical analysis	126
Constructing a calibration curve with heteroscedastic data	127
Estimating the detection limit from a linear calibration curve	128
Intersection of two regression lines	129
Linear model when both variables are subject to error	131
Nonlinear calibration	132
Effects of the Sample's Matrix	132
Standard addition method (SAM)	133
Error Propagation in Calibration and Analysis	134
Multicomponent Analysis	135
Generalized Standard Addition Method (GSAM)	139
Experimental Designs in GSAM	142
Total difference calculations	142
Incremental difference calculations	144
References	145
Suggested Readings	147
5. RESOLUTION OF ANALYTICAL SIGNALS	149
Determining the Complexity of Signals	150
Visual inspection	150
Differentiation of signals	150
Factor analysis	155
Geometric approach to factor analysis	155
Algebraic approach to factor analysis	158
Resolving Composite Signals	159
Deconvolution of overlapping signals	159
Resolving signals by mathematical modeling (curve fitting)	159
Taylor series linearization	160
Grid search	163
Method of steepest descent	164
Newton method	164
Resolving signals using multiple regression and optimization techniques	166

Method of rank annihilation	168
Biller-Biemann technique	169
Resolution using eigenvectors scores space	170
Other resolution techniques	171
References	172
Suggested Readings	175
6. EXPLORATORY DATA ANALYSIS	179
Multivariate Leverage	180
Category Versus Continuous Property Data	182
Pattern Recognition: The Approach	183
Preprocessing Techniques	188
Missing data	188
Redundant/constant variables	189
Translation	189
Normalization	190
Scaling	191
Autoscaling	193
Feature weighting	195
Rotation	197
Eigenvector rotation	198
Varimax rotation	206
Factor analysis	214
Nonlinear factor analysis	214
Display Techniques	216
Introduction	216
Linear methods	216
Nonlinear methods	217
Unsupervised Learning	219
Supervised Learning	228
Introduction	228
Linear learning machine	229
K-nearest neighbor method	234
Feature selection in classification	239
SIMCA	242
Cross-validation	254
Bayes classification rule	256

Pattern Recognition Analysis in Practice: Classification of Archeological Artifacts on the Basis of Trace Element Data	257
Partial Least-Squares Path Modeling	281
References	292
Suggested Readings	294
7. AN INTRODUCTION TO CONTROL AND OPTIMIZATION	297
Single Input/Single Output: Optimization	298
Single Input/Single Output: Control	301
Multiple Input/Single Output: Optimization	305
Multiple Input/Multiple Output Systems	310
References	311
LIST OF TABLES AND THEIR ORIGINS	313
INDEX	327