

Contents

<i>About the Editor</i>	iii
<i>List of Contributors</i>	xv
<i>Preface</i>	xix
<i>Acknowledgements</i>	xxi
1. New Applications of Immobilized Metal Ion Affinity Chromatography in Chemical Biology	1
<i>Rachel Codd, Jiesi Gu, Najwa Ejje and Tulip Lifa</i>	
1.1 Introduction	1
1.2 Principles and Traditional Use	2
1.3 A Brief History	4
1.4 New Application 1: Non-protein Based Low Molecular Weight Compounds	5
1.4.1 Siderophores	6
1.4.2 Anticancer Agent: Trichostatin A	10
1.4.3 Anticancer Agent: Bleomycin	12
1.4.4 Anti-infective Agents	13
1.4.5 Other Agents	14
1.4.6 Selecting a Viable Target	15
1.5 New Application 2: Multi-dimensional Immobilized Metal Ion Affinity Chromatography	17
1.6 New Application 3: Metabolomics	20
1.7 New Application 4: Coordinate-bond Dependent Solid-phase Organic Synthesis	20
1.8 Green Chemistry Technology	21
1.9 Conclusion	23
Acknowledgments	24
References	24
2. Metal Complexes as Tools for Structural Biology	37
<i>Michael D. Lee, Bim Graham and James D. Swarbrick</i>	
2.1 Structural Biological Studies and the Major Techniques Employed	37
2.2 What do Metal Complexes have to Offer the Field of Structural Biology?	38
2.3 Metal Complexes for Phasing in X-ray Crystallography	39

2.4	Metal Complexes for Derivation of Structural Restraints via Paramagnetic NMR Spectroscopy	41
2.4.1	Paramagnetic Relaxation Enhancement (PRE)	42
2.4.2	Residual Dipolar Coupling (RDC)	43
2.4.3	Pseudo-Contact Shifts (PCS)	43
2.4.4	Strategies for Introducing Lanthanide Ions into Bio-Macromolecules	44
2.5	Metal Complexes as Spin Labels for Distance Measurements via EPR Spectroscopy	53
2.6	Metal Complexes as Donors for Distance Measurements via Luminescence Resonance Energy Transfer (LRET)	54
2.7	Concluding Statements and Future Outlook	56
	References	56
3.	AAS, XRF, and MS Methods in Chemical Biology of Metal Complexes	63
	<i>Ingo Ott, Christophe Biot and Christian Hartinger</i>	
3.1	Introduction	63
3.2	Atomic Absorption Spectroscopy (AAS)	64
3.2.1	Fundamentals and Basic Principles of AAS	64
3.2.2	Instrumental and Technical Aspects of AAS	65
3.2.3	Method Development and Aspects of Practical Application	67
3.2.4	Selected Application Examples	69
3.3	Total Reflection X-Ray Fluorescence Spectroscopy (TXRF)	72
3.3.1	Fundamentals and Basic Principles of TXRF	72
3.3.2	Instrumental/Methodical Aspects of TXRF and Applications	73
3.4	Subcellular X-ray Fluorescence Imaging of a Ruthenium Analogue of the Malaria Drug Candidate Ferroquine Using Synchrotron Radiation	74
3.4.1	Application of X-ray Fluorescence in Drug Development Using Ferroquine as an Example	75
3.5	Mass Spectrometric Methods in Inorganic Chemical Biology	80
3.5.1	Mass Spectrometry and Inorganic Chemical Biology: Selected Applications	83
3.6	Conclusions	90
	Acknowledgements	90
	References	90
4.	Metal Complexes for Cell and Organism Imaging	99
	<i>Kenneth Yin Zhang and Kenneth Kam-Wing Lo</i>	
4.1	Introduction	99
4.2	Photophysical Properties	100
4.2.1	Fluorescence and Phosphorescence	100
4.2.2	Two-photon Absorption	101
4.2.3	Upconversion Luminescence	102

4.3	Detection of Luminescent Metal Complexes in an Intracellular Environment	104
4.3.1	Confocal Laser-scanning Microscopy	104
4.3.2	Fluorescence Lifetime Imaging Microscopy	105
4.3.3	Flow Cytometry	106
4.4	Cell and Organism Imaging	107
4.4.1	Factors Affecting Cellular Uptake	107
4.4.2	Organelle Imaging	116
4.4.3	Two-photon and Upconversion Emission Imaging for Cells and Organisms	133
4.4.4	Intracellular Sensing and Labeling	136
4.5	Conclusion	143
	Acknowledgements	143
	References	143
5.	Cellular Imaging with Metal Carbonyl Complexes	149
	<i>Luca Quaroni and Fabio Zobi</i>	
5.1	Introduction	149
5.2	Vibrational Spectroscopy of Metal Carbonyl Complexes	151
5.3	Microscopy and Imaging of Cellular Systems	154
5.3.1	Techniques of Vibrational Microscopy	155
5.4	Infrared Microscopy	155
5.4.1	Concentration Measurements with IR Spectroscopy and Spectromicroscopy	157
5.4.2	Water Absorption	158
5.4.3	Metal Carbonyls as IR Probes for Cellular Imaging	158
5.4.4	<i>In Vivo</i> Uptake and Reactivity of Metal Carbonyl Complexes	162
5.5	Raman Microscopy	167
5.5.1	Concentration Measurements with Raman Spectroscopy and Spectromicroscopy	169
5.5.2	Metal Carbonyls as Raman Probes for Cellular Imaging	169
5.6	Near-field Techniques	171
5.6.1	Concentration Measurements with Near-field Techniques	172
5.6.2	High-resolution Measurement of Intracellular Metal–Carbonyl Accumulation by Photothermal Induced Resonance	173
5.7	Comparison of Techniques	175
5.8	Conclusions and Outlook	176
	Acknowledgements	177
	References	178
6.	Probing DNA Using Metal Complexes	183
	<i>Lionel Marcélis, Willem Vanderlinden and Andrée Kirsch-De Mesmaeker</i>	
6.1	General Introduction	183
6.2	Photophysics of Ru(II) Complexes	184
6.2.1	The First Ru(II) Complex Studied in the Literature: $[\text{Ru}(\text{bpy})_3]^{2+}$	184

6.2.2	Homoleptic Complexes	186
6.2.3	Heteroleptic Complexes	186
6.2.4	Photoinduced Electron Transfer (PET) and Energy Transfer Processes	188
6.3	State-of-the-art on the Interactions of Mononuclear Ru(II) Complexes with Simple Double-stranded DNA	190
6.3.1	Studies on Simple Double-stranded DNAs	191
6.3.2	Influence of DNA on the Emission Properties	193
6.4	Structural Diversity of the Genetic Material	194
6.4.1	Mechanical Properties of DNA	195
6.4.2	DNA Topology	195
6.4.3	SMF Study with $[\text{Ru}(\text{phen})_2(\text{PHEHAT})]^{2+}$ and $[\text{Ru}(\text{TAP})_2(\text{PHEHAT})]^{2+}$	198
6.5	Unusual Interaction of Dinuclear Ru(II) Complexes with Different DNA Types	200
6.5.1	Reversible Interaction of $\{(\text{Ru}(\text{phen})_2)_2\text{HAT}\}^{4+}$ with Denatured DNA	201
6.5.2	Targeting G-quadruplexes with Photoreactive $\{(\text{Ru}(\text{TAP})_2)_2\text{TPAC}\}^{4+}$	204
6.5.3	Threading Intercalation	205
6.6	Conclusions	207
	Acknowledgement	208
	References	208
7.	Visualization of Proteins and Cells Using Dithiol-reactive Metal Complexes	215
	<i>Danielle Park, Ivan Ho Shon, Minh Hua, Vivien M. Chen and Philip J. Hogg</i>	
7.1	The Chemistry of As(III) and Sb(III)	215
7.2	Cysteine Dithiols in Protein Function	217
7.3	Visualization of Dithiols in Isolated Proteins with As(III)	218
7.4	Visualization of Dithiols on the Mammalian Cell Surface with As(III)	218
7.5	Visualization of Dithiols in Intracellular Proteins with As(III)	219
7.6	Visualization of Tetracysteine-tagged Recombinant Proteins in Cells with As(III)	219
7.7	Visualization of Cell Death in the Mouse with Optically Labelled As(III)	220
7.7.1	Cell Death in Health and Disease	220
7.7.2	Cell Death Imaging Agents	222
7.7.3	Visualization of Cell Death in Mouse Tumours, Brain and Thrombi with Optically Labelled As(III)	223
7.8	Visualization of Cell Death in Mouse Tumours with Radio-labelled As(III)	225
7.9	Summary and Perspectives	227
	References	227

8. Detection of Metal Ions, Anions and Small Molecules Using Metal Complexes	233
<i>Qin Wang and Katherine J. Franz</i>	
8.1 How Do We See What's in a Cell?	233
8.1.1 Why Metal Complexes as Sensors?	234
8.1.2 Design Strategies for Sensors Built with Metal Complexes	234
8.1.3 General Criteria of Metal-based Sensors for Bioimaging	236
8.2 Metal Complexes for Detection of Metal Ions	236
8.2.1 Tethered Sensors for Detecting Metal Ions	237
8.2.2 Displacement Sensors for Detecting Metal Ions	240
8.2.3 MRI Contrast Agents for Detecting Metal Ions	240
8.2.4 Chemodosimeters for Metal Ions	249
8.3 Metal Complexes for Detection of Anions and Neutral Molecules	252
8.3.1 Tethered Approach: Metal Complex as Recognition Unit	255
8.3.2 Displacement Approach: Metal Complex as Quencher	258
8.3.3 Dosimeter Approach	262
8.4 Conclusions	268
Acknowledgements	268
Abbreviations	268
References	269
9. Photo-release of Metal Ions in Living Cells	275
<i>Celina Gwizdala and Shawn C. Burdette</i>	
9.1 Introduction to Photochemical Tools Including Photocaged Complexes	275
9.2 Calcium Biochemistry and Photocaged Complexes	278
9.2.1 Strategies for Designing Photocaged Complexes for Ca^{2+}	278
9.2.2 Biological Applications of Photocaged Ca^{2+} Complexes	282
9.3 Zinc Biochemistry and Photocaged Complexes	284
9.3.1 Biochemical Targets for Photocaged Zn^{2+} Complexes	284
9.3.2 Strategies for Designing Photocaged Complexes for Zn^{2+}	286
9.4 Photocaged Complexes for Other Metal Ions	291
9.4.1 Photocaged Complexes for Copper	291
9.4.2 Photocaged Complexes for Iron	295
9.4.3 Photocaged Complexes for Other Metal Ions	297
9.5 Conclusions	298
Acknowledgment	298
References	298
10. Release of Bioactive Molecules Using Metal Complexes	309
<i>Peter V. Simpson and Ulrich Schatzschneider</i>	
10.1 Introduction	309
10.2 Small-molecule Messengers	310
10.2.1 Biological Generation and Delivery of CO , NO , and H_2S	310

10.2.2	Metal–Nitrosyl Complexes for the Cellular Delivery of Nitric Oxide	311
10.2.3	CO-releasing Molecules (CORMs)	314
10.3	“Photouncaging” of Neurotransmitters from Metal Complexes	321
10.3.1	“Caged” Compounds	321
10.3.2	“Uncaging” of Bioactive Molecules	322
10.4	Hypoxia Activated Cobalt Complexes	324
10.4.1	Bioreductive Activation of Cobalt Complexes	324
10.4.2	Hypoxia-activated Cobalt Prodrugs of DNA Alkylators	326
10.4.3	Hypoxia-activated Cobalt Prodrugs of MMP Inhibitors	329
10.5	Summary	333
	Acknowledgments	333
	References	323
11.	Metal Complexes as Enzyme Inhibitors and Catalysts in Living Cells	341
	<i>Julien Furrer, Gregory S. Smith and Bruno Therrien</i>	
11.1	Introduction	341
11.2	Metal-based Inhibitors: From Serendipity to Rational Design	342
11.2.1	Mimicking the Structure of Known Enzyme Binders	342
11.2.2	Coordinating Known Enzymatic Inhibitors to Metal Complexes	343
11.2.3	Exchanging Ligands to Inhibit Enzymes	344
11.2.4	Controlling Conformation by Metal Coordination	344
11.2.5	Competing with Known Metallo-Enzymatic Processes	345
11.3	The Next Generation: Polynuclear Metal Complexes as Enzyme Inhibitors	346
11.3.1	Polyoxometalates: Broad Spectrum Enzymatic Inhibitory Effects	347
11.3.2	Polynuclear G-quadruplex DNA Stabilizers: Potential Inhibitors of Telomerase	349
11.3.3	Polynuclear Polypyridyl Ruthenium Complexes: DNA Topoisomerase II Inhibitors	352
11.4	Metal Complexes as Catalysts in Living Cells	355
11.4.1	Catalysis of NAD ⁺ /NADH	355
11.4.2	Oxidation of the Thiols Cysteine and Glutathione	357
11.4.3	Cytotoxicity Controlled by Oxidation	361
11.5	Catalytic Conversion and Removal of Functional Groups	361
11.6	Catalytically Controlled Carbon–Carbon Bond Formation	362
11.7	Conclusion	364
	References	364
12.	Other Applications of Metal Complexes in Chemical Biology	373
	<i>Tanmaya Joshi, Malay Patra and Gilles Gasser</i>	
12.1	Introduction	373
12.2	Surface Immobilization of Proteins and Enzymes	373

12.3	Metal Complexes as Artificial Nucleases	378
12.3.1	Mono- and Multinuclear Cu(II) and Zn(II) Complexes	380
12.3.2	Lanthanide Complexes	388
12.4	Cellular Uptake Enhancement Using Metal Complexes	390
12.5	Conclusions	394
	Acknowledgments	394
	References	394
Index		403