

CONTENTS

<i>Preface</i>	<i>page</i> ix
<i>Chapter 1. Introduction: Reactor Types</i>	
1·1 The nature of the problem	1
1·2 Criteria of choice	1
1·3 Batchwise and continuous reaction	2
1·4 The tubular reactor	3
1·5 The continuous stirred tank reactor (C.S.T.R.)	8
1·6 The fluidized-bed reactor	11
1·7 Other types of reactor	12
1·8 The steady state	13
1·9 Transient behaviour	14
1·10 Factors affecting performance	14
<i>References</i>	15
<i>Chapter 2. Chemical Kinetics</i>	
2·1 Introduction	16
2·2 The material balance equation	16
2·3 The rate equation	17
2·4 Reaction order and velocity constants	19
2·5 Thermodynamic restrictions on rate equations	21
2·6 Parallel and consecutive reactions	26
2·7 Rate-limiting steps	30
<i>Symbols</i>	33
<i>References</i>	33
<i>Chapter 3. Tubular Reactors</i>	
3·1 The plug flow assumption (P.F.A.)	34
3·2 Elementary design method	34
3·3 Acetaldehyde decomposition example	37

3.4	Residence-time, space-time, space-velocity	page 39
3.5	Deviations from the plug-flow assumption	44
3.6	Transverse temperature gradients: a general discussion	45
3.7	Transverse temperature gradients: Baron's method	48
3.8	Pressure drop	52
3.9	Summary	52
<i>Appendix I</i> Isothermal reaction with plug flow		54
<i>Appendix II</i> Adiabatic reaction with plug flow		56
<i>Symbols</i>		58
<i>References</i>		58

Chapter 4. Continuous Stirred Tank Reactors

4.1	The 'perfect mixing' assumption	60
4.2	Calculation of reactor volume	63
4.3	Stirred tanks in series	67
4.4	Autocatalytic reactions	69
4.5	Summary	71
<i>Symbols</i>		73
<i>References</i>		73

Chapter 5. Residence-Time Distributions, Mixing and Dispersion

5.1	The residence-time distribution as a factor in reactor performance	74
5.2	Residence-time functions, and relations between them	75
5.3	Residence-time in a chain of stirred tanks	77
5.4	Residence-time distributions for composite systems	81
5.5	The determination of residence-time distributions	82
5.6	The measurement of residence-time functions in industry	86
5.7	The effect of a spread of residence-times on reactor yield	87
5.8	Segregation and limits of reactor yield	89
5.9	Residence-times and dispersion in flow through pipes	90
5.10	Dispersion in flow through packed beds	96
<i>References</i>		100

Chapter 6. Chemical Factors Affecting the Choice of Reactor

6.1	Factors affecting choice	page 102
6.2	Yield and conversion	103
6.3	Selectivity and reactivity	106
6.4	Consecutive or degradation reactions	107
6.5	Polymerization reactions	111
6.6	Crystallization	117
6.7	Parallel reactions	118
6.8	Parallel-consecutive reactions, coupled reactions	121
6.9	Instantaneous and overall reaction yields	123
6.10	Combination of C.S.T.R. and tubular reactor	129
6.11	Removal of product. Recirculation	130
	<i>Symbols</i>	132
	<i>References</i>	132

Chapter 7. Some Mass-Transfer Factors Affecting Reactor Performance

7.1	The importance of mass-transfer in chemical reaction	134
7.2	Heterogeneous catalysis	135
7.3	Mass-transfer between packing and fluid	137
7.4	Diffusion within catalyst particles	139
7.5	Catalyst effectiveness	140
7.6	Effectiveness factors	143
7.7	Fluid-solid reactions. 'Shrinking particle' case	146
7.8	'Ash-coated' particles	148
7.9	Fluid-fluid reactions. Trickle-bed reactors	151
7.10	Bubble-cloud reactors, fermenters	154
7.11	The physics of fluidized beds	155
7.12	Fluidized-bed reactors	157
	<i>Symbols</i>	160
	<i>References</i>	161

Chapter 8. The Thermal Characteristics of Reactors

8.1	Introduction	page 164
8.2	Well-mixed systems with steady feed	166
8.3	Tubular reactors	175
8.4	The diffusion-controlled regime	177
8.5	The propagation of reaction zones	185
8.6	Thermal effects in catalyst particles	192
	<i>Symbols</i>	195
	<i>References</i>	196

Chapter 9. Reactor Stability and Optimization

9.1	Introduction	197
9.2	The stability of exothermic reactions	197
9.3	Limit cycles and oscillating reactions	198
9.4	'Parametric sensitivity'	200
9.5	Optimization—simplified objective functions	202
9.6	Output and yield problems	203
9.7	The reversible exothermic reaction	208
9.8	Conclusion	219
	<i>Symbols</i>	220
	<i>References</i>	220

*Index*222