

CONTENTS

PREFACE **iii**

INTRODUCTION **1**

Uncertainty in Science	2
Theories and Experiments	2
Strategies for Influencing Attitudes	3
What Governs Our Belief About What's Going On	6
Probability Revisited	7
Measurement Scales	8
Four Types of Scales	8
Permissible Transformations	10
Scales and Statistical Applications	11

1 PROBABILITY THEORY **13**

Set Theory	13
Finite and Infinite Sets	14
Notation for Specifying a Set	15
Subsets	15
Interacting Sets: Unions and Intersections	17
Universal Sets	17
Venn Diagrams: Pictorial Representations of Sets	18
Complements	20
The Empty Set	22
Mutual Exclusion and Exhaustion	22
Partitions	23
Probability: Basic Rules and Tools	24
Situations and Outcomes of Situations	24

More General Laws of Probability	26
Use of Venn Diagrams to Get a Feeling for Probabilities	30
A Different Sort of Pictorial Representation:	
The Contingency Table	32
Relationship Between Probabilities and Frequencies:	
In the Long Run	33
Conditional Probability and Independence	35
Conditional Probability	36
Relationship Between Conditional Probability $p(A B)$	
and Conditional Probability $p(B A)$	39
Independence	43
Computing Probabilities of Joint Events	45
Use of the Multiplication Rule in Conjunction with	
the Addition Rule	49
Summary	51
Digression	52
1-1 Probability and Everyday Life	52
Problems	53
 2 RANDOM VARIABLES AND DISTRIBUTION 59	
Introduction to Frequency Distributions	60
Random Variables	60
Construction of a Frequency Distribution	60
Histograms	62
Probability Distribution	62
Frequencies to Probabilities and Vice Versa	63
Empirical Versus Theoretical Distributions	64
Theoretical Frequency Distributions	67
Discrete and Continuous Probability Distributions	69
Some Important Characteristics of Probability Distributions	71
Probability Distributions of Continuous Random Variables	73
Summary	80
Digressions	81
2-1 A Geometric Distribution	81
2-2 Calculation of Areas	82
Problems	83
 3 DESCRIPTIVE MEASURES 89	
Frequency Distributions Revisited	90
Cumulative Distributions and Percentiles	91
Class Intervals	93
Descriptive Statistics To Describe Data	95
Measures of Central Tendency	96
Measures of Variability	102
Means and Variances of Distributions	105
Empirical Frequency Distributions	105

Empirical Probability Distributions	108
Discrete Theoretical Probability Distributions	111
Continuous Theoretical Probability Distributions	116
New Terms for Mean and Variance of Theoretical Distributions	116
Standard Scores	117
Summary	119
Digressions	120
3-1 If We Have Set of Deviation Scores Around Mean, Sum of These Scores Must Be Zero	120
3-2 Mean of a Geometric Distribution	121
Problems	122
4 BINOMIAL DISTRIBUTION 125	
What a Binomial Distribution Is and How To Make One	125
Number of Successes as a Random Variable	126
Another Example	130
Opinion Polls	130
Characteristics of the Binomial Distribution	132
Shape of the Binomial	132
Expected Value (Mean) and Variance of the Binomial Distribution	134
Frequencies and Proportions	137
Proportions	137
Binomial Distributions Using Proportions	137
Frequencies Versus Proportions: An Example	139
Summary	140
Digressions	141
4-1 Binomial Coefficients: Pascal's Triangle	141
4-2 Derivation of Expected Value of Binomial Distribution	142
4-3 Derivation of Variance of Binomial Distribution	143
Problems	144
5 INTRODUCTION TO HYPOTHESIS TESTING: THE SIGN TEST 151	
Decision Making	152
Correct and Incorrect Decisions	152
Crime and Punishment: A Specific Example	152
The Role of Decision Making in Hypothesis Testing	154
Samples and Populations: An Introduction	154
Hypotheses About the Population	154
The Data	156
Type I Versus Type II Errors	158
Construction of a Criterion	159
Our Decision	161
If Criterion Is Not Exceeded	162
Hypothesis-Testing Steps	162
Summary	164
Problems	164

6 NORMAL DISTRIBUTION 167**Principal Characteristics of the Normal Distribution**

167

Mathematical Form of the Normal Distribution 168

Role of the Normal Distribution in the World 170

The *z* Distribution

172

Standard Scores 172

The *z*-Distribution Tables 174Using *z*-Distribution Tables To Compute

Probabilities 175

Calculations Involving the Normal Approximation to
the Binomial 180**More About Hypothesis Testing: The *z*-Test**

184

An Illustrative Experiment: Lightbulb Lifetimes 185

Three Types of Alternative Hypotheses 185

One-Tailed/Two-Tailed "Paradox" 191

A Shortcut 192

Summary

193

Digressions

194

6-1 Pine Forests and Examinations: The Central Limit Theorem
in Nature 1946-2 Mean and Variance of a Distribution of Standard
Scores 195

6-3 Statement of The Null Hypothesis 197

Problems

197

**7 SAMPLING DISTRIBUTIONS AND
HYPOTHESIS TESTING WITH MEANS 203****Populations and Samples**

204

Three Types of Probability Distributions 204

Relation of These Distributions to Data 207

Sampling Distribution of Sample Means

207

Mean of a Distribution of Sample Means 208

Variance of a Distribution of Sample Means 208

Calculating Probabilities Involving Means 211

Hypothesis Testing with Means

213

CAI Programs: Testing a Mean Against a Constant 213

Competing CAI Programs: Testing the Difference
Between Two Means 216**Summary**

222

Digressions

223

7-1 Mean (Expected Value) of Sampling Distribution of Sample
Means Based on Samples of Size n 2237-2 Variance of Sampling Distribution of Sample Means Based
on Samples of Size n 2237-3 Relationship of Sampling Distribution to Binomial
Distribution 226

7-4 Variance of A Distribution of Difference Scores 227

Problems

228

8 POWER 232

Construction of Power Curves:	
SMARTIUM Revisited	234
Calculation of Power for Specific Alternative Hypotheses	234
Power Curves: Power as Function of the Alternative Hypothesis	238
Things That Affect Power	239
Size of σ_M	239
The α -Level	245
Type of Test	246
Power in a Two-Tailed Situation	249
A Weird and Unusual Error: Correctly Rejecting H_0 for Wrong Reasons	249
Accepting the Null Hypothesis	251
Not Finding Something Doesn't Mean It's Not There	251
Failing to Reject the Null Hypothesis When There Is a Great Deal of Power	252
Choosing Number of Subjects	253
Confidence Intervals	255
Calculation of Confidence Intervals	256
Power and Confidence Intervals	259
Uses of Confidence Intervals	260
Summary	262
Problems	263

9 PARAMETER ESTIMATION 266

Population Parameters from Sample Statistics	267
Unbiased Estimates	268
Consistent Estimates	269
Sampling Distributions Revisited	269
Estimation of the Population Variance	270
Unbiasing the Estimate of σ^2	270
Meaning of Variance	271
Sums of Squares and Degrees of Freedom	272
Computational Formula for Variance	273
Obtaining an Unbiased Estimate of Variance of Distribution of a Sample Means	274
Summary	275
Digressions	276
9-1 Expected value of S^2	276
9-2 Why Is S^2 an Underestimate of σ^2 ?	277
Problems	280

10 t-TEST 282

Testing a Mean Against a Constant	283
Memory for the Mueller—Lyer Illusion: Introduction to the <i>t</i> -Test	284
Within-Subjects Designs	291
Confidence Intervals and Hypothesis Testing: An Editorial Comment	294

Testing the Difference Between Two Sample Means	297
Hypnosis and Memory: Design with Two Groups and Equal n 's	297
A Note on Within- Versus Between-Subjects Designs	304
Complicating Matters: Unequal Numbers of Subjects	304
Assumptions	310
Violation of Assumptions	311
But Not To Worry (Usually)	311
The Scaling Assumption	312
Nonparametric Tests	313
Summary	313
Problems	314
 11 ANALYSIS OF VARIANCE 322	
Between- and Within-Conditions Variance	323
Three Experimental Groups:	
Methods for Teaching Calculus	324
Estimation of Population Variance	324
Confidence Intervals	327
Hypothesis-Testing Steps	328
Computational Formulas for Analysis of Variance	336
Formula for Mean Square Within	336
Formula For Mean Square Between	338
Analysis of Variance Summary Table	340
Start-to-Finish Example:	
Toothpaste and Cavity Prevention	342
Hypothesis Testing	344
Calculation of ANOVA Summary Table Entries	345
Partition of Total Sum of Squares	346
Dividing the Pie	347
Aesthetics and Rules	349
Relationship Between Degrees of Freedom and Sums of Squares	349
Square-and-Divide Rule	350
Summary	350
Digressions	351
11-1 More on the F -Ratio	351
11-2 Proof That Mean of Group Means Is Equal to T/N	352
11-3 Linear Model	352
Problems	353
 12 TWO-WAY ANALYSIS OF VARIANCE (AND BEYOND) 357	
Two-Factor Experiment: Effects of Incentive and Retention Interval on Memory Performance	358
Combining Independent Variables: Factorial Designs	359
Hypothetical Data	360
A Two-Way ANOVA	363
Six-Condition One-Way ANOVA	364
Two-Way ANOVA	366

Interactions	371
Three Hypothetical Outcomes	371
Symmetry of Interactions	374
Scaling Problems	374
Statistical Treatment of Interactions	376
A Complete Example: Short Term Memory Scanning	379
The Sternberg Experiment	379
Scanning Letters Versus Words	380
Confidence Intervals	381
Hypothesis Testing	382
Conclusions from the Experiment	385
Dividing the Pie	385
Equal <i>n</i>'s Requirement	386
Looking at Graphs: An Intuitive View of What's Happening	387
More Examples of 2×2 Designs	388
More Than Two Levels	389
Higher Order ANOVA	390
Analysis of a Three-Way ANOVA	391
Higher Still	393
Summary	394
Problems	395
13 WITHIN-SUBJECTS (OR REPEATED-MEASURES) DESIGNS	402
Sleep Deprivation and Problem-Solving Time	403
Hypothetical Results: Between Subjects	403
A Within-Subjects Design	404
A Concrete Example	406
Analysis of Within-Subjects Design as Two-Factor Design	409
Summary Table	410
Confidence Intervals in a Within-Subjects Design	411
Multiple Observations per Subject per Condition	413
Sums of Squares	413
Summary Table	415
Expected Mean Squares	418
Different Sources of Variance	418
Expected Mean Squares as Part of Summary Table	420
Fixed Versus Random Effects	421
Headache Relief	421
Other Random Effects	422
Higher Order Designs	423
Analysis of This Kind of Design	423
Still Higher	423
More Complicated Designs	423
Summary	425
Digression	426
13-1 Rationale Behind Within-Subjects Confidence Intervals	426
Problems	429

14 CORRELATION, PREDICTION, AND LINEAR RELATIONSHIPS 435	
The Concept of Prediction	436
Prediction and Conditional Probability	437
Independence and Null Hypothesis	438
Correlational Versus Experimental Studies	438
An Experimental Study	439
A Correlational Study	439
Correlation Is Not Causality	441
Other Examples of Correlated Variables	442
Linear Relationships	443
Measures of Linear Relationships: Regression Lines and Correlation Coefficient	445
Monday Night Rituals	445
Regression Line	446
How Good Is the Fit?	452
Testing Significance of a Relationship	458
Null Hypothesis for Correlation	458
The <i>r</i> -to- <i>t</i> Transformation	459
Other Types of Relationships	460
Curvilinear Correlation	461
Multiple Regression	462
Regression Toward the Mean	463
Predicting IQ	464
Three Other Examples	465
Summary	466
Digressions	467
14-1 Derivation of Regression Line That Will Minimize $\Sigma(Y_i - Y'_i)^2$	467
14-2 Variance, Covariance, and r^2	469
14-3 Prediction of <i>X</i> from <i>Y</i>	469
Problems	470
15 AFTER OR INSTEAD OF ANOVA 474	
Planned and Post Hoc Comparisons	475
Post Hoc Tests (Unplanned Comparisons)	476
Educational Techniques	477
Problems with Post hoc Tests	479
Two Types of Post Hoc Tests	480
Planned Comparisons	484
Political Preferences: Examples of Planned Comparisons	484
Multiple Planned Comparisons	490
Drug-Induced Time Distortion	490
Independence of Hypotheses	494
Some Techniques for Making Up Weights	499
Test for Linear Trend: Sternberg Revisited	500
Testing for Monotonic Trend	503
Choosing Weights in Two-Way Designs	504
Planned Comparisons in Within-Subjects Design	507

Percentage of Total Variance Accounted for	508
A Very Powerful Experiment	509
Omega Squared	512
ω^2 in Other ANOVA Situations	514
ω^2 and r^2	515
Three Measures in Experimental Situation	515
Relative Importance of These Three Measures	515
Summary	516
Digressions	518
15-1 Proof that $t^2 = F$	518
15-2 Other Types of Post Hoc Tests	520
15-3 Pearson r^2 Between w_j 's and M_j 's	520
Problems	521
16 CHI-SQUARE 527	
A New Distribution	527
Mathematical Properties of χ^2 Distribution	528
Characteristics of χ^2 Distribution	531
Uses of the χ^2 Distribution	533
Computerized Teaching: Testing Against an Exact Variance	533
Fitting an Exact Distribution: Are Babies Like Coins?	536
Testing for Independence in a Contingency Table	540
Relationships Among Distributions	543
Summary	545
Digressions	546
16-1 Expectation of z^2	546
16-2 Distribution of $\Sigma(x - M)^2/\sigma_0^2$	546
Problems	548
17 NONPARAMETRIC TESTS 551	
Violent Assumption Violations	551
Computer Arithmetic Revisited	552
Retreat to Nonparametrics: Mann-Whitney <i>U</i> -test	555
Parametric Versus Nonparametric Tests	559
Misguided Memory	560
Which Nonparametric Test Is Appropriate?	564
More Nonparametric Tests	564
Comparing a Set of Data to Some Specified Theoretical Distribution: Kolmogorov-Smirnov One-Sample Test	566
Comparing Two Conditions (Within-Subjects Design): Wilcoxon Test	567
Comparing Many Conditions (Within-Subjects Design): Friedman Test	569
Discovering Associations: Spearman's Rank-Difference Correlation (Rho)	570
Summary	572
Digression	572
17-1 When the n 's Are Large	572
Problems	572

APPENDIX A SUMMATION AND SUBSCRIPTS	577
Summation Notation	577
Summation Notation: General	577
Other Ways of Using the Summation Sign	578
Summation Notation and Subscripts	578
A Little Algebra of Summation Signs	579
APPENDIX B DERIVATION OF RAW-SCORE FORMULA FOR VARIANCE	581
APPENDIX C COUNTING RULES	583
Five Counting Rules	584
Counting Rule 1: General Rule for Computing Numbers of Sequences	584
Counting Rule 2: A Specific Case of Counting Rule 1 That Occurs When All k 's Are Equal	586
Counting Rule 3: Permutations	587
Counting Rule 4: Ordered Combinations	588
Counting Rule 5: Unordered Combinations	591
Combining Counting Rules To Count Complicated Things	595
Probability of a Full House	595
Common Birthdays	597
Summary	598
APPENDIX D NOTATION FOR ANALYSIS OF VARIANCE SITUATION	600
A General Situation	600
Double Summation	601
APPENDIX E TABLES	603
BIBLIOGRAPHY	626
ANSWERS TO SELECTED PROBLEMS	629
INDEX	636