

# Contents

|                                                     |    |
|-----------------------------------------------------|----|
| <i>Preface</i>                                      | v  |
| <i>Nomenclature</i>                                 | xi |
| 1 Fluid flow calculations                           | 1  |
| 1.1 Power                                           | 1  |
| 1.1.1 Pumping                                       | 2  |
| 1.1.2 Pressures                                     | 2  |
| 1.2 The steady flow equation                        | 3  |
| 1.2.1 Useful forms of the equation                  | 4  |
| 1.2.2 Orifices                                      | 4  |
| 1.2.3 Oil temperature rise                          | 6  |
| 1.3 Flowrates                                       | 6  |
| 1.3.1 Flow through tubes                            | 7  |
| 1.3.2 Capillary (small-bore) tubes                  | 8  |
| 1.3.3 Connecting pipelines                          | 8  |
| 1.3.4 Turbulent flow                                | 9  |
| 1.3.5 Approximations used in calculation            | 9  |
| 1.3.6 Annular passages                              | 10 |
| 1.3.7 Viscosity variations                          | 11 |
| 1.4 Compressibility                                 | 11 |
| 1.4.1 Compressibility flowrates                     | 11 |
| 1.4.2 Dilation of containers                        | 12 |
| 1.4.3 Air content                                   | 13 |
| 1.4.4 Flexible hoses                                | 14 |
| 1.4.5 Surges                                        | 14 |
| 1.4.6 Pressure waves                                | 16 |
| <i>Problems</i>                                     | 17 |
| 2 Dynamic analysis                                  | 21 |
| 2.1 First-order systems                             | 21 |
| 2.1.1 A first-order fluid system                    | 22 |
| 2.1.2 A first-order electrical system               | 23 |
| 2.1.3 A first-order hydraulic servomechanism        | 24 |
| 2.1.4 The first-order equation                      | 25 |
| 2.2 The step input                                  | 26 |
| 2.2.1 Response of first-order systems to step input | 27 |
| 2.2.2 Response as a function of time                | 27 |
| 2.3 Ramp input and response for first-order systems | 28 |

|       |                                                       |    |
|-------|-------------------------------------------------------|----|
| 2.4   | Harmonic input                                        | 29 |
| 2.4.1 | Harmonic response of first-order systems              | 29 |
| 2.4.2 | Graphical representations                             | 30 |
| 2.4.3 | Harmonic response locus                               | 32 |
| 2.4.4 | Logarithmic plots                                     | 33 |
| 2.5   | Second-order systems                                  | 34 |
| 2.5.1 | A second-order electrical circuit                     | 36 |
| 2.5.2 | The second-order equation                             | 37 |
| 2.6   | Response of second-order systems to ramp input        | 39 |
| 2.7   | Harmonic response of second-order systems             | 39 |
| 2.7.1 | Harmonic response locus                               | 40 |
| 2.7.2 | Logarithmic plots                                     | 40 |
|       | <i>Problems</i>                                       | 41 |
| 3     | Hydraulic frequency                                   | 45 |
| 3.1   | A single-acting hydraulic jack                        | 45 |
| 3.2   | A double-acting cylinder                              | 47 |
| 3.3   | A double-acting cylinder with a long exhaust pipeline | 48 |
| 3.4   | An oil hydraulic motor with two pipelines             | 50 |
|       | <i>Problems</i>                                       | 52 |
| 4     | Variable pump systems                                 | 54 |
| 4.1   | The pump                                              | 55 |
| 4.2   | The motor                                             | 55 |
| 4.3   | Open loop systems                                     | 56 |
| 4.3.1 | Steady state operation                                | 56 |
| 4.3.2 | Dynamic analysis                                      | 57 |
| 4.4   | Closed loop (position control) systems                | 58 |
| 4.5   | Practical systems                                     | 60 |
|       | <i>Problem</i>                                        | 60 |
| 5     | Linear control theory                                 | 61 |
| 5.1   | Algebraic stability criterion (Routh–Hurwitz)         | 61 |
| 5.2   | Open loop relations                                   | 63 |
| 5.2.1 | First-order example                                   | 63 |
| 5.2.2 | Third-order example                                   | 63 |
| 5.2.3 | General case                                          | 65 |
| 5.2.4 | Harmonic input                                        | 65 |
| 5.2.5 | Open loop harmonic response locus                     | 65 |
| 5.2.6 | Open loop testing                                     | 66 |
| 5.3   | Nyquist stability criterion                           | 67 |
| 5.4   | Adequate stability                                    | 67 |
| 5.4.1 | Gain and phase margins                                | 67 |

*Contents*

ix

|                                                           |            |
|-----------------------------------------------------------|------------|
| 5.4.2 Logarithmic locus                                   | 68         |
| 5.4.3 Maximum closed loop dynamic magnification           | 69         |
| <i>Problem</i>                                            | 71         |
| <b>6 Pumps</b>                                            | <b>72</b>  |
| 6.1 Types of pump                                         | 72         |
| 6.2 Flow irregularities                                   | 75         |
| 6.3 Constant-pressure sources                             | 79         |
| <b>7 Flow through valves</b>                              | <b>81</b>  |
| 7.1 Four-way spool valves                                 | 81         |
| 7.1.1 Critical centre valves                              | 82         |
| 7.1.2 Flowrate prediction                                 | 83         |
| 7.1.3 Open centre type (underlapped four-way valve)       | 86         |
| 7.2 Three-way spool valves                                | 88         |
| 7.3 Nozzle-flapper valves                                 | 88         |
| <i>Problems</i>                                           | 90         |
| <b>8 Valve-controlled systems</b>                         | <b>91</b>  |
| 8.1 Four-way valve system                                 | 91         |
| 8.2 Pure inertia analysis                                 | 92         |
| 8.2.1 Analysis with friction and leakage                  | 93         |
| 8.3 Valve position servos                                 | 95         |
| 8.3.1 The 'velocity constant'                             | 96         |
| 8.3.2 Governing equation                                  | 96         |
| 8.4 Feedback lever system (with a four-way valve)         | 98         |
| 8.5 Valve servo characteristics                           | 99         |
| 8.5.1 Stability                                           | 99         |
| 8.5.2 Harmonic response                                   | 100        |
| 8.5.3 Description of harmonic response                    | 101        |
| 8.5.4 Open loop characteristics                           | 106        |
| 8.5.5 Adequate stability                                  | 106        |
| <b>9 Electrohydraulic servo valves</b>                    | <b>107</b> |
| 9.1 Flow control valves                                   | 107        |
| 9.2 Valves with coil armatures                            | 108        |
| 9.2.1 A single-stage valve                                | 108        |
| 9.2.2 A two-stage valve                                   | 110        |
| 9.3 Valves with torque motors                             | 112        |
| 9.4 Valve dynamics                                        | 114        |
| 9.4.1 Torque motors                                       | 114        |
| 9.4.2 Two-stage operation                                 | 115        |
| 9.4.3 Simplified representations of valve characteristics | 116        |

|                                                      |     |
|------------------------------------------------------|-----|
| 9.5 Comments on electrical supplies                  | 117 |
| 9.5.1 Pulse width modulation                         | 118 |
| 10 Electrohydraulic servomechanisms                  | 120 |
| 10.1 'Proportional' systems                          | 121 |
| 10.1.1 Analysis                                      | 123 |
| 10.1.2 Precision                                     | 125 |
| 10.2 Velocity control                                | 126 |
| 10.2.1 Pump control                                  | 126 |
| 10.3 Compensated control                             | 127 |
| 10.3.1 Analysis                                      | 127 |
| 10.3.2 A possible electrical network                 | 128 |
| 10.3.3 Systems with a compensating network           | 131 |
| 10.4 Valve characteristics                           | 132 |
| 11 Conclusion                                        | 133 |
| Appendix A Spool valve stroking forces               | 134 |
| A.1 Flow forces                                      | 134 |
| A.1.1 Steady flow                                    | 134 |
| A.1.2 Transient flow                                 | 136 |
| A.2 Effective moving mass                            | 137 |
| A.3 Frictional forces                                | 138 |
| A.4 Summary                                          | 139 |
| <i>Problem</i>                                       | 140 |
| Appendix B Three-way valve systems                   | 141 |
| B.1 Valves                                           | 141 |
| B.1.1 Critical centre type                           | 142 |
| B.1.2 Open centre type (underlapped three-way valve) | 142 |
| B.2 Three-way valve system                           | 143 |
| B.3 Three-way valve servo                            | 145 |
| B.3.1 Governing equation                             | 145 |
| Appendix C Special purpose valves                    | 148 |
| C.1 Poppet valves                                    | 148 |
| C.2 Single-stage relief valve                        | 149 |
| C.3 A flow control valve                             | 151 |
| C.3.1 Forces                                         | 152 |
| C.3.2 Flowrates                                      | 152 |
| Appendix D Numerical examples                        | 155 |
| D.1 Question (i)                                     | 155 |

|                                              |            |
|----------------------------------------------|------------|
| D.1.1 Calculation of answers to question (i) | 155        |
| D.1.2 Answers to question (i)                | 159        |
| D.2 Question (ii)                            | 159        |
| D.2.1 Calculation of answer to question (ii) | 159        |
| D.2.2 Answer to question (ii)                | 160        |
| <b>Appendix E Hydraulic lock</b>             | <b>161</b> |
| <b>General Problems</b>                      | <b>165</b> |
| <b>References</b>                            | <b>169</b> |
| <b>Index</b>                                 | <b>171</b> |