

□ Contents □

1	WHY CARBOCATIONIC POLYMERIZATION?	1
1.1	Advantages and Uses of Carbocationic Polymerization, 2	
1.2	Problems, Challenges, and the Future, 5	
	References, 8	
2	DEFINITIONS, TERMINOLOGY, AND NOMENCLATURE	9
2.1	Carbocations, Counteranions, and Carbocationic Polymerizations, 10	
2.2	Initiators, Coinitiators, and Initiating Systems, 10	
2.3	Abbreviation of Multicomponent Systems, 13	
2.4	A Note on the Definition of Friedel-Crafts Halides, 13	
	References, 14	
3	PHENOMENOLOGY OF CARBOCATIONIC POLYMERIZATION	15
3.1	The Active Species, 16	
	<i>The Nature of Polymerization-Active Carbocations, 16</i>	
	Formation of Carbocations, 16	
	Relative Stability of Carbocations, 17	
	Structure Effects Influencing Carbocation Stability, 19	
	Carbocation Stability in Solution, 21	
	The Active Species in Carbocationic Polymerizations, 23	
	Ions and Ion Pairs, 23	
	Carbocations and Active Species in Propagation, 24	
	Pseudocationic Polymerizations, 26	
	<i>Types of Electrophilic Reactions in Carbocationic Polymerizations, 29</i>	

3.2	Monomers, 31
	<i>Electronic Characteristics of Cationic Monomers, 31</i>
	<i>Steric Prohibition of Vinyl Cationic Polymerization, 33</i>
	<i>Monomers Containing More than One Nucleophilic Site capable of Polymerization, 36</i>
	<i>Cationic Monomers, 36</i>
3.3	Initiators, Coinitiators, and Initiating Systems, 36
	<i>Protic or Brønsted Acids, 56</i>
	<i>Stable Cation Salts, 58</i>
	<i>Friedel-Crafts Acid-Based Initiating Systems, 59</i>
	<i>The Problem of Defining Friedel-Crafts Acids, 59</i>
	<i>Acidity of Friedel-Crafts Acids and Nucleophilicity of Counteranions, 64</i>
	<i>Reactivity of Friedel-Crafts Acid-Based Initiating Systems, 71</i>
3.4	Solvents, 72
	References, 75

4	THE CHEMISTRY OF CARBOCATIONIC POLYMERIZATION	81
4.1	The Chemistry of Initiation, 82	
	<i>Definitions and Scope, 82</i>	
	<i>Chemical Methods, 82</i>	
	<i>Two-Electron (Heteroclytic) Transpositions, 83</i>	
	<i>Brønsted (Protic) Acids, 84</i>	
	<i>Stable Carbenium Ion Salts, 90</i>	
	<i>Friedel-Crafts Acids, 95</i>	
	<i>Introduction</i> □ <i>Cationogen/Friedel-Crafts Acid Systems</i> □ <i>Cationogen = Brønsted Acids</i> □ <i>Stopping Experiments</i> □ <i>A General Scheme of Initiation with Brønsted</i> □ <i>Acid/Friedel-Crafts Acid Systems</i> □ <i>Scope and Limitation of Brønsted Acid</i> □ <i>Friedel-Crafts Acid Initiating Systems</i> □ <i>Cationogen = Carbenium Ion Source</i> □ <i>Initiation Details with RX/MeX_n Systems</i> □ <i>Preparative Significance of RX/MeX_n</i>	

Systems □ *Cationogen = Halogen* □ *Cationogen = Miscellaneous Compounds* BF_3OR_2 Complexes □ Direct Initiation by Friedel-Crafts Acids □ Halometalation: The Sigwalt-Olah Theory □ Autoionization: The Korshak-Plesch-Marek Theory □ Allylic Self-Initiation: The Kennedy Theory □ Conclusions Relative to Direct Initiation

Miscellaneous Methods, 116

Inorganic Complexes □ Iodine □ Miscellaneous Systems Including Acidic Solids

One-Electron (Homolytic) Transpositions, 120

Introduction, 120

Direct Radical Oxidation, 121

Charge Transfer Polymerizations, 122

Thermally Induced Charge Transfer Polymerization □ Photoinduced Charge Transfer Polymerization

Conclusions: Initiation by One-Electron Transpositions, 135

Physical Methods, 137

High-Energy or Ionizing Radiation, 138

X-ray Initiated Carbocationic Polymerization, 138

Pulse Radiolysis, 140

UV Radiation, 140

Direct Techniques Including Ion Injection, 140

Indirect Techniques, 141

High Electric Fields: Field Emission and Field Ionization, 142

Electroinitiation, 144

Significant Contributions, 144

Conclusions on Electroinitiated Carbocationic Polymerizations, 147

Conclusions: Initiation by Physical Methods, 148

Conclusions: Toward a Comprehensive View of Initiation in Carbocationic Polymerization, 152

Organization and Classes of Initiating Systems, 153

A Simplified View of Initiation, 156

4.2 The Chemistry of Propagation, 158

Overview, 158

Ionicity of the Propagating Species, 159
Effect of Electron Acceptors on Propagation, 163
Isomerization Polymerization, 165
Isomerizations by Bond (Electron) Rearrangement, 166
Intra-Intermolecular Polymerization, 166
Transannular Polymerization, 167
Polymerization by Strain Relief and Ring Opening, 168
Isomerization by Material Transport, 169
Controversial Ill-Supported Claims in the Field of Isomerization Polymerizations, 178
Stereochemistry of Propagation, 180
Vinyl Ethers, 180
Influence of Monomer Geometry on Stereochemistry, 180
Effect of the Nature and Concentration of Coinitiator and Solvent on Stereochemistry, 181
Effect of Temperature on Stereochemistry, 184
The Penultimate Effect, 185
Stereoselective Polymerization of Racemic Monomer Mixture, 186
 α -Methylstyrene, 187
Stereochemical Mechanism of Propagation, 188

4.3 The Chemistry of Chain Transfer, 192

Introduction and Terminology, 192
Chain Transfer Reactions, 194
Chain Transfer by Counteranion, 194
Chain Transfer by Unshared Electron Pair, 202
Chain Transfer by π Electron Systems, 206
Chain Transfer by Olefin, 206
Chain Transfer by Aromatic Group, 209
Chain Transfer by Hydride Transfer, 211
Conclusions, 213

4.4 The Chemistry of Termination, 216

Introduction, 216
Termination Reactions, 218

Termination by Neutralization, 218
<i>Neutralization by Reversal of Ionization (Macroester Formation), 218</i>
<i>Neutralization with the Formation of Two Species, 220</i>
<i>Alkylations and Arylations of Growing Cation (Z = Organic Group) □ Hydridation of Growing Cation (Z = H) □ Halogenation of Growing Cation (Z = Cl, Br)</i>
Termination Involving Stable Cation Formation, 227
Quenching, 232
Conclusions, 233
References, 239

5 KINETICS OF CARBOCATIONIC POLYMERIZATION	255
5.1 Introduction, 256	
5.2 Validity of the Steady State Assumption in Carbocationic Polymerizations, 257	
5.3 Determination for Rates and Rate Constants, 262	
<i>Difficulties Relative to k_p Determination, 262</i>	
<i>Kinetic Studies of Representative Systems, 265</i>	
<i>Polymerization of α-Methylstyrene Coinitiated by n-BuOTiCl₃, 265</i>	
<i>Polymerization of Isobutyl Vinyl Ether Initiated by Trityl Salts, 267</i>	
<i>Determination of $k_{tr,M}$: Polymerization of p-Methoxystyrene Initiated by Trityl Salt, 269</i>	
<i>Polymerization of Isobutyl Vinyl Ether Initiated by X-Rays, 270</i>	
5.4 The Effect of Solvent and Temperature on Rates, Rate Constants, and Activation Parameters, 273	
<i>Rates and Rate Constants, 273</i>	
<i>Activation Parameters, 277</i>	
5.5 Rate Constant Ratios by Molecular Weight Determination, 282	
5.6 The Effect of Temperature on Molecular Weight, 284	

5.7	Molecular Weight Distributions, 289	
5.8	Conclusions: Compilation and Analysis of Reliable Kinetic Data, 292	
	References, 301	
6	COPOLYMERIZATION AND REACTIVITY	305
6.1	Introduction, 306	
6.2	Definitions and Fundamentals, 306	
6.3	Determination of Reactivity Ratios, 307	
	<i>Differential Methods, 308</i>	
	<i>Integral Method, 309</i>	
	<i>Discussion of Reactivity Ratio Determination Methods, 309</i>	
	<i>The Kelen-Tüdös Method, 310</i>	
	<i>A Comprehensive Compilation of Reactivity Ratios, 312</i>	
6.4	Penultimate Effect, 332	
6.5	Prediction of Ionic Copolymerization Reactivity Ratios, 334	
6.6	Sequence Distribution Analysis, 336	
6.7	Experimental Study of Reactivity, 338	
	<i>Use of Rate Constants, 338</i>	
	<i>Use of Reactivity Ratios, 338</i>	
	<i>Reactivity by $^{13}\text{C-NMR}$, 339</i>	
6.8	Theoretical Study of Reactivity, 341	
	<i>Methods and Their Evolution, 341</i>	
	Huckel's Method. A Criticism, 341	
	Pople's Method, 342	
	<i>Use of Calculations, 342</i>	
	<i>Reactivities of Vinyl Ethers and β-Substituted Vinyl Ethers. Comparison with Unsaturated Hydrocarbons, 345</i>	
	<i>Q, e Scheme in Cationic Polymerization, 347</i>	

6.9	Effect of Experimental Conditions of Reactivity, 349	
	<i>The Effect of Temperature, 349</i>	
	<i>The Effect of the Nature of Solvent, 357</i>	
	<i>The Effect of the Nature of Coinitiator and Counteranion, 362</i>	
	<i>The Effect of Additives, 366</i>	
	<i>Quantum Study of the Effects of Solvent and Coinitiator on Reactivity, 368</i>	
	<i>The Effect of Electric Field on Reactivity, 374</i>	
6.10	Influence of Structural Factors on Reactivity, 374	
	<i>Influence of Electronic Factors, 374</i>	
	<i>Hammett's Postulate and Reactivity, 375</i>	
	<i>Influence of Steric Factors, 377</i>	
6.11	An Application of Reactivity Analysis: Azeotropic Copolymerization, 380	
6.12	Molecular Weight Depression in Copolymerization, 381	
	References, 386	
7	STEP-GROWTH POLYMERIZATION	395
7.1	Introduction, 396	
7.2	Reaction Mechanism, 398	
	<i>Substrate and Positional Selectivity, 399</i>	
	<i>Steric and Substituent Effects, 399</i>	
7.3	Polybenzyls, 401	
	References, 406	
8	SEQUENTIAL (BLOCK AND GRAFT) COPOLYMERS	409
8.1	Introduction, 410	
8.2	A Note on Terminology, 410	

8.3	Block Copolymers, 412	
	<i>Synthesis of Block Copolymers, 412</i>	
	<i>A Summary of Block Copolymers, 419</i>	
8.4	Graft Copolymers, 422	
	<i>Generalities, 422</i>	
	<i>Synthesis Principles and Graft Characteristics, 423</i>	
	<i>Bigraft Copolymers, 432</i>	
	<i>Surface Grafting, 434</i>	
	<i>An Efficient Grafting Onto: The Synthesis of Poly(Butadiene-g-Styrene), 434</i>	
	<i>Graft Blocks, 436</i>	
	<i>Graft by Macromers, 437</i>	
	<i>Conclusions, 438</i>	
	<i>References, 440</i>	
9	MACROMOLECULAR ENGINEERING BY CARBOCATIONIC POLYMERIZATION	443
9.1	A Glance at the Past, 444	
9.2	Elements of Cationic Macromolecular Engineering, 446	
	<i>Controlled Initiation, 446</i>	
	<i>Propagation, 448</i>	
	<i>Control of Chain Transfer, 449</i>	
	<i>The Inifer Method, 449</i>	
	<i>Proton Traps, 452</i>	
	<i>Quasi-Living Polymerization, 453</i>	
	<i>Controlled Termination, 456</i>	
9.3	Combination of Elements and Summary, 458	
	<i>References, 462</i>	
10	INDUSTRIAL PROCESSES, TECHNOLOGICAL ASPECTS	465
10.1	Introduction, 466	
10.2	Isobutylene-Based Carbocationic Polymerizations, 467	

Low Molecular Weight Polyisobutylenes, 468
Polybutenes, 469
Manufacture, 469
Molecular Weight Control of Polybutenes, 473
Structure, Properties, and Uses, 474
Polyisobutylenes, 475
Manufacture, 476
Structure, 478
Properties and Uses, 478
Medium and High Molecular Weight Polyisobutylenes, 479
Manufacture, 479
Structure, Properties, and Uses, 480
Isobutylene Copolymers, Terpolymers, and Derivatives, 481
Butyl Rubber, 481
Manufacture, 481
Structure, Properties, and Uses, 482
Liquid Butyl: Manufacture, Properties, and Uses, 484
Isobutylene-Isoprene-Divinylbenzene Terpolymers, 484
Halogenated Butyl Rubbers, 485
Miscellaneous Polyisobutylene Derivatives, 486
Carboxy-Terminated Polyisobutylene, 486
Hydroxy-Terminated Polyisobutylene, 486
Conjugated Diene Butyl, 487
S-Polymer, 487
Isobutylene-Cyclopentadiene Copolymers, 487
Butyl Latex, 488

10.3 **Hydrocarbon Resins, 488**
Petroleum Resins: Feeds, Manufacture, Varieties, 488
Properties and Uses, 490
Polyterpene Resins, 491
 β -Pinene Resins, 492
Dipentene Resins, 494
 α -Pinene Resins, 496

Resin Characteristics, 496
Production, 497
Applications, 498
<i>β</i>-Piene Resins, 498
Dipentene Resins, 498
<i>α</i>-Piene Resins, 498
Terpene-phenolic Resins, 498
10.4 Polybutadiene Oils, 499
10.5 Vinyl Ether-Based Industrial Polymerization Processes and Products, 499
References, 501

INDEX505