

Contents

Chapter 1

Separation Processes 1

1.1	Industrial Chemical Processes	1			
1.2	Mechanism of Separation	5			
1.3	Separation by Phase Addition or Creation	7			
1.4	Separation by Barrier	14			
1.5	Separation by Solid Agent	16			
1.6	Separation by External Field or Gradient	18			
1.7	Component Recoveries and Product Purities	19			
1.8	Separation Power	22			
1.9	Selection of Feasible Separation Processes	23			
Summary	27	References	28	Exercises	28

Chapter 2

Thermodynamics of Separation Operations 31

2.1	Energy, Entropy, and Availability Balances	31			
2.2	Phase Equilibria	36			
	Fugacities and Activity Coefficients	37			
	K-Values	38			
2.3	Ideal Gas, Ideal Liquid Solution Model	42			
2.4	Graphical Correlations of Thermodynamic Properties	47			
2.5	Nonideal Thermodynamic Property Models	51			
	P-v-T Equation-of-State Models	54			
	Derived Thermodynamic Properties from P-v-T Models	58			
2.6	Activity Coefficient Models for the Liquid Phase	63			
	Activity Coefficients from Gibbs Free Energy	63			
	Regular Solution Model	64			
	Chao-Seader Correlation	66			
	Nonideal Liquid Solutions	68			
	Margules Equations	72			
	van Laar Equation	72			
	Local Composition Concept and Wilson Equation	74			
	NRTL Equation	78			
	UNIQUAC Equation	79			
	UNIFAC Equation	80			
	Liquid-Liquid Equilibria	82			
Summary	83	References	83	Exercises	84

Chapter 3

Mass Transfer and Diffusion	90
3.1 Steady-State Ordinary Molecular Diffusion	91
Fick's Law of Diffusion	92
Velocities in Mass Transfer	92
Equimolar Counterdiffusion	93
Unimolecular Diffusion	95
3.2 Diffusion Coefficients	99
Diffusivity in Gas Mixtures	99
Diffusivity in Liquid Mixtures	101
Diffusivity in Solids	109
3.3 One-Dimensional Steady-State and Unsteady-State Molecular Diffusion	117
Steady State	117
Unsteady State	118
3.4 Molecular Diffusion in Laminar Flow	126
Falling Liquid Film	127
Boundary-Layer Flow on a Flat Plate	133
Fully Developed Flow in a Straight, Circular Tube	136
3.5 Mass Transfer in Turbulent Flow	140
Reynolds Analogy	141
Chilton–Colburn Analogy	142
Prandtl Analogy	143
3.6 Models for Mass Transfer at a Fluid–Fluid Interface	144
Film Theory	145
Penetration Theory	146
Surface Renewal Theory	147
Film-Penetration Theory	149
3.7 Two-Film Theory and Overall Mass Transfer Coefficients	150
Gas–Liquid Case	150
Liquid–Liquid Case	153
Case of Large Driving Forces for Mass Transfer	154
Summary	157
References	158
Exercises	159

Chapter 4**Single Equilibrium Stages and Flash Calculations** **163**

4.1 The Gibbs Phase Rule and Degrees of Freedom	163
Degrees-of-Freedom Analysis	164
4.2 Binary Vapor–Liquid Systems	166
4.3 Azeotropic Systems	173
4.4 Multicomponent Flash, Bubble-Point, and Dew-Point Calculations	176
Isothermal Flash	178
Bubble and Dew Points	181
Adiabatic Flash	184
4.5 Ternary Liquid–Liquid Systems	186
4.6 Multicomponent Liquid–Liquid Systems	195

4.7	Solid–Liquid Systems	198
	Leaching	198
	Crystallization	201
	Liquid Adsorption	204
4.8	Gas–Liquid Systems	207
4.9	Gas–Solid Systems	211
	Sublimation and Desublimation	211
	Gas Adsorption	212
4.10	Multiphase Systems	213
	Approximate Method for a Vapor–Liquid–Solid System	214
	Approximate Method for a Vapor–Liquid–Liquid System	215
	Rigorous Method for a Vapor–Liquid–Liquid System	218
	Summary	220
	References	221
	Exercises	222

Chapter 5

Cascades 232

5.1	Cascade Configurations	232
5.2	Solid–Liquid Cascades	234
5.3	Single-Section Liquid–Liquid Extraction Cascades	237
	Cocurrent Cascade	238
	Crosscurrent Cascade	239
	Countercurrent Cascade	239
5.4	Multicomponent Vapor–Liquid Cascades	241
	Single-Section Cascades by Group Methods	242
	Two-Section Cascades	246
5.5	Degrees of Freedom and Specifications for Countercurrent Cascades	253
	Stream Variables	254
	Adiabatic or Nonadiabatic Equilibrium Stage	254
	Single-Section Countercurrent Cascade	255
	Two-Section Countercurrent Cascades	257
	Summary	263
	References	264
	Exercises	264

Chapter 6

Absorption and Stripping of Dilute Mixtures 270

6.1	Equipment	273
6.2	General Design Considerations	281
6.3	Graphical Equilibrium-Stage Method for Trayed Towers	282
	Minimum Absorbent Flow Rate	284
	Number of Equilibrium Stages	285
6.4	Algebraic Method for Determining the Number of Equilibrium Stages	289
6.5	Stage Efficiency	292
	Performance Data	293
	Empirical Correlations	294
	Semitheoretical Models	299
	Scale-up from Laboratory Data	303

6.6	Tray Capacity, Pressure Drop, and Mass Transfer	305
	Tray Diameter	306
	Tray Vapor Pressure Drop	310
	Mass Transfer Coefficients and Transfer Units	312
	Weeping, Entrainment, and Downcomer Backup	315
6.7	Rate-Based Method for Packed Columns	317
6.8	Packed Column Efficiency, Capacity, and Pressure Drop	325
	Liquid Holdup	325
	Capacity and Pressure Drop	330
	Mass Transfer Efficiency	335
6.9	Concentrated Solutions in Packed Columns	342
	Summary	346
	References	347
	Exercises	348

Chapter 7

	Distillation of Binary Mixtures	355
7.1	Equipment and Design Considerations	358
7.2	McCabe–Thiele Graphical Equilibrium-Stage Method for Trayed Towers	359
	Rectifying Section	362
	Stripping Section	365
	Feed-Stage Considerations	366
	Determination of Number of Equilibrium Stages and Feed-Stage Location	369
	Limiting Conditions	369
	Column Operating Pressure and Condenser Type	374
	Subcooled Reflux	376
	Reboiler Type	380
	Condenser and Reboiler Duties	381
	Feed Preheat	382
	Optimal Reflux Ratio	382
	Large Number of Stages	384
	Use of Murphree Efficiency	386
	Multiple Feeds, Side Streams, and Open Steam	387
7.3	Estimation of Stage Efficiency	391
	Performance Data	391
	Empirical Correlations	392
	Semitheoretical Models	395
	Scale-up from Laboratory Data	396
7.4	Capacity of Trayed Towers and Reflux Drums	397
	Reflux Drums	397
7.5	Rate-Based Method for Packed Columns	398
	HETP Method	399
	HTU Method	400
7.6	Ponchon–Savarit Graphical Equilibrium-Stage Method for Trayed Towers	404
	Summary	406
	References	407
	Exercises	408

Chapter 8

Liquid–Liquid Extraction with Ternary Systems	419
8.1 Equipment	423
Mixer-Settlers	424
Spray Columns	426
Packed Columns	426
Plate Columns	426
Columns with Mechanically Assisted Agitation	427
8.2 General Design Considerations	432
8.3 Hunter and Nash Graphical Equilibrium-Stage Method	438
Number of Equilibrium Stages	440
Minimum and Maximum Solvent-to-Feed Flow-Rate Ratios	444
Use of Right-Triangle Diagrams	448
Use of an Auxiliary Distribution Curve	451
Extract and Raffinate Reflux	453
8.4 Maloney and Schubert Graphical Equilibrium-Stage Method	459
8.5 Theory and Scale-up of Extractor Performance	465
Mixer-Settler Units	465
Multicompartment Columns	475
Axial Dispersion	480
Summary	484
References	485
Exercises	486

Chapter 9

Approximate Methods for Multicomponent, Multistage Separations	492
9.1 Fenske–Underwood–Gilliland Method	492
Selection of Two Key Components	493
Column Operating Pressure	495
Fenske Equation for Minimum Equilibrium Stages	497
Distribution of Nonkey Components at Total Reflux	500
Underwood Equations for Minimum Reflux	501
Gilliland Correlation for Actual Reflux Ratio and Theoretical Stages	508
Feed-Stage Location	511
Distribution of Nonkey Components at Actual Reflux	512
9.2 Kremser Group Method	514
Strippers	514
Liquid–Liquid Extraction	518
Summary	521
References	521
Exercises	522

Chapter 10

Equilibrium-Based Methods for Multicomponent Absorption, Stripping, Distillation, and Extraction	526
10.1 Theoretical Model for an Equilibrium Stage	526
10.2 General Strategy of Mathematical Solution	530
10.3 Equation-Tearing Procedures	531
Tridiagonal Matrix Algorithm	531

Bubble-Point Method for Distillation	534
Sum-Rates Method for Absorption and Stripping	544
Isothermal Sum-Rates Method for Liquid-Liquid Extraction	551
10.4 Simultaneous Correction Procedures	555
10.5 Inside-Out Method	569
MESH Equations	571
Rigorous and Complex Thermodynamic Property Models	571
Approximate Thermodynamic Property Models	572
Inside-Out Algorithm	573
Summary	577
References	578
Exercises	579

Chapter 11

Enhanced Distillation and Supercritical Extraction	586
11.1 Use of Triangular Graphs	587
Residue-Curve Maps	591
Distillation-Curve Maps	599
Product-Composition Regions at Total Reflux	602
11.2 Extractive Distillation	604
11.3 Salt Distillation	611
11.4 Pressure-Swing Distillation	612
11.5 Homogeneous Azeotropic Distillation	616
11.6 Heterogeneous Azeotropic Distillation	621
Multiplicity	627
11.7 Reactive Distillation	631
11.8 Supercritical-Fluid Extraction	641
Summary	650
References	651
Exercises	653

Chapter 12

Rate-Based Models for Distillation	655
12.1 Rate-Based Model	658
12.2 Thermodynamic Properties and Transport-Rate Expressions	662
12.3 Methods for Estimating Transport Coefficients and Interfacial Area	667
12.4 Vapor and Liquid Flow Patterns	668
12.5 Method of Calculation	668
ChemSep Program	668
RATEFRAC Program	674
Summary	677
References	677
Exercises	677

Chapter 13

Batch Distillation	681
13.1 Differential Distillation	681
13.2 Binary Batch Rectification with Constant Reflux and Variable Distillate Composition	685
13.3 Binary Batch Rectification with Constant Distillate Composition and Variable Reflux	688
13.4 Batch Stripping and Complex Batch Distillation	689
13.5 Effect of Liquid Holdup	691

13.6	Shortcut Method for Multicomponent Batch Rectification with Constant Reflux	691
13.7	Stage-by-Stage Methods for Multicomponent Batch Rectification	695
	Rigorous Model	695
	Rigorous Integration Method	698
	Rapid Solution Method	705
	Summary	708
	References	708
	Exercises	709

Chapter 14

Membrane Separations	713	
14.1	Membrane Materials	718
14.2	Membrane Modules	722
14.3	Transport in Membranes	725
	Porous Membranes	725
	Bulk Flow	726
	Liquid Diffusion	728
	Gas Diffusion	729
	Nonporous Membranes	731
	Solution-Diffusion for Liquid Mixtures	731
	Solution-Diffusion for Gas Mixtures	733
	Module Flow Patterns	738
	Cascades	741
	Concentration Polarization	745
14.4	Dialysis and Electrodialysis	747
	Electrodialysis	750
14.5	Reverse Osmosis	755
14.6	Gas Permeation	761
14.7	Pervaporation	765
	Summary	771
	References	773
	Exercises	773

Chapter 15

Adsorption, Ion Exchange, and Chromatography	778	
15.1	Sorbents	781
	Adsorbents	782
	Ion Exchangers	789
	Sorbents for Chromatography	792
15.2	Equilibrium Considerations	794
	Pure Gas Adsorption	794
	Liquid Adsorption	802
	Ion Exchange Equilibria	806
	Equilibria in Chromatography	810
15.3	Kinetic and Transport Considerations	811
	External Transport	812
	Internal Transport	816
	Mass Transfer in Ion Exchange and Chromatography	818

15.4 Sorption Systems	820
Adsorption	820
Ion Exchange	824
Chromatography	825
Slurry Adsorption (Contact Filtration)	827
Fixed-Bed Adsorption (Percolation)	831
Thermal-Swing Adsorption	843
Pressure-Swing Adsorption	848
Continuous Countercurrent Adsorption Systems	856
Ion-Exchange Cycle	861
Chromatographic Separations	863
Summary	870
References	872
Exercises	873
Index	881