

# Contents

---

## Preface

## Chapter 0 The Subject of Transport Phenomena 1

---

### Part I Momentum Transport

#### Chapter 1 Viscosity and the Mechanisms of Momentum Transport 11

---

|                          |                                                                           |  |
|--------------------------|---------------------------------------------------------------------------|--|
| §1.1                     | Newton's Law of Viscosity (Molecular Momentum Transport) 11               |  |
|                          | Ex. 1.1-1 Calculation of Momentum Flux 15                                 |  |
| §1.2                     | Generalization of Newton's Law of Viscosity 16                            |  |
| §1.3                     | Pressure and Temperature Dependence of Viscosity 21                       |  |
|                          | Ex. 1.3-1 Estimation of Viscosity from Critical Properties 23             |  |
| §1.4 <sup>o</sup>        | Molecular Theory of the Viscosity of Gases at Low Density 23              |  |
|                          | Ex. 1.4-1 Computation of the Viscosity of a Gas Mixture at Low Density 28 |  |
|                          | Ex. 1.4-2 Prediction of the Viscosity of a Gas Mixture at Low Density 28  |  |
| §1.5 <sup>o</sup>        | Molecular Theory of the Viscosity of Liquids 29                           |  |
|                          | Ex. 1.5-1 Estimation of the Viscosity of a Pure Liquid 31                 |  |
| §1.6 <sup>o</sup>        | Viscosity of Suspensions and Emulsions 31                                 |  |
| §1.7                     | Convective Momentum Transport 34                                          |  |
| Questions for Discussion | 37                                                                        |  |
| Problems                 | 37                                                                        |  |

#### Chapter 2 Shell Momentum Balances and Velocity Distributions in Laminar Flow 40

---

|      |                                                                  |  |
|------|------------------------------------------------------------------|--|
| §2.1 | Shell Momentum Balances and Boundary Conditions 41               |  |
| §2.2 | Flow of a Falling Film 42                                        |  |
|      | Ex. 2.2-1 Calculation of Film Velocity 47                        |  |
|      | Ex. 2.2-2 Falling Film with Variable Viscosity 47                |  |
| §2.3 | Flow Through a Circular Tube 48                                  |  |
|      | Ex. 2.3-1 Determination of Viscosity from Capillary Flow Data 52 |  |
|      | Ex. 2.3-2 Compressible Flow in a Horizontal Circular Tube 53     |  |

|                          |                                                                                        |  |
|--------------------------|----------------------------------------------------------------------------------------|--|
| §2.4                     | Flow through an Annulus 53                                                             |  |
| §2.5                     | Flow of Two Adjacent Immiscible Fluids 56                                              |  |
| §2.6                     | Creeping Flow around a Sphere 58                                                       |  |
|                          | Ex. 2.6-1 Determination of Viscosity from the Terminal Velocity of a Falling Sphere 61 |  |
| Questions for Discussion | 61                                                                                     |  |
| Problems                 | 62                                                                                     |  |

#### Chapter 3 The Equations of Change for Isothermal Systems 75

---

|                   |                                                                                    |  |
|-------------------|------------------------------------------------------------------------------------|--|
| §3.1              | The Equation of Continuity 77                                                      |  |
|                   | Ex. 3.1-1 Normal Stresses at Solid Surfaces for Incompressible Newtonian Fluids 78 |  |
| §3.2              | The Equation of Motion 78                                                          |  |
| §3.3              | The Equation of Mechanical Energy 81                                               |  |
| §3.4 <sup>o</sup> | The Equation of Angular Momentum 82                                                |  |
| §3.5              | The Equations of Change in Terms of the Substantial Derivative 83                  |  |
|                   | Ex. 3.5-1 The Bernoulli Equation for the Steady Flow of Inviscid Fluids 86         |  |
| §3.6              | Use of the Equations of Change to Solve Flow Problems 86                           |  |
|                   | Ex. 3.6-1 Steady Flow in a Long Circular Tube 88                                   |  |
|                   | Ex. 3.6-2 Falling Film with Variable Viscosity 89                                  |  |
|                   | Ex. 3.6-3 Operation of a Couette Viscometer 89                                     |  |
|                   | Ex. 3.6-4 Shape of the Surface of a Rotating Liquid 93                             |  |
|                   | Ex. 3.6-5 Flow near a Slowly Rotating Sphere 95                                    |  |

|                          |                                                                |  |
|--------------------------|----------------------------------------------------------------|--|
| §3.7                     | Dimensional Analysis of the Equations of Change 97             |  |
|                          | Ex. 3.7-1 Transverse Flow around a Circular Cylinder 98        |  |
|                          | Ex. 3.7-2 Steady Flow in an Agitated Tank 101                  |  |
|                          | Ex. 3.7-3 Pressure Drop for Creeping Flow in a Packed Tube 103 |  |
| Questions for Discussion | 104                                                            |  |
| Problems                 | 104                                                            |  |

#### Chapter 4 Velocity Distributions with More than One Independent Variable 114

---

|      |                                                       |  |
|------|-------------------------------------------------------|--|
| §4.1 | Time-Dependent Flow of Newtonian Fluids 114           |  |
|      | Ex. 4.1-1 Flow near a Wall Suddenly Set in Motion 115 |  |

|                                                                                               |            |                                                                                |            |
|-----------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------|------------|
| Ex. 4.1-2 Unsteady Laminar Flow between Two Parallel Plates                                   | 117        | Ex. 6.2-2 Flow Rate for a Given Pressure Drop                                  | 183        |
| Ex. 4.1-3 Unsteady Laminar Flow near an Oscillating Plate                                     | 120        | §6.3 Friction Factors for Flow around Spheres                                  | 185        |
| §4.2 <sup>o</sup> Solving Flow Problems Using a Stream Function                               | 121        | Ex. 6.3-1 Determination of the Diameter of a Falling Sphere                    | 187        |
| Ex. 4.2-1 Creeping Flow around a Sphere                                                       | 122        | §6.4 <sup>o</sup> Friction Factors for Packed Columns                          | 188        |
| §4.3 <sup>o</sup> Flow of Inviscid Fluids by Use of the Velocity Potential                    | 126        | Questions for Discussion                                                       | 192        |
| Ex. 4.3-1 Potential Flow around a Cylinder                                                    | 128        | Problems                                                                       | 193        |
| Ex. 4.3-2 Flow into a Rectangular Channel                                                     | 130        | <b>Chapter 7 Macroscopic Balances for Isothermal Flow Systems</b>              | <b>197</b> |
| Ex. 4.3-3 Flow near a Corner                                                                  | 131        |                                                                                |            |
| §4.4 <sup>o</sup> Flow near Solid Surfaces by Boundary-Layer Theory                           | 133        | §7.1 The Macroscopic Mass Balance                                              | 198        |
| Ex. 4.4-1 Laminar Flow along a Flat Plate (Approximate Solution)                              | 136        | Ex. 7.1-1 Draining of a Spherical Tank                                         | 199        |
| Ex. 4.4-2 Laminar Flow along a Flat Plate (Exact Solution)                                    | 137        | §7.2 The Macroscopic Momentum Balance                                          | 200        |
| Ex. 4.4-3 Flow near a Corner                                                                  | 139        | Ex. 7.2-1 Force Exerted by a Jet (Part a)                                      | 201        |
| Questions for Discussion                                                                      | 140        | §7.3 The Macroscopic Angular Momentum Balance                                  | 202        |
| Problems                                                                                      | 141        | Ex. 7.3-1 Torque on a Mixing Vessel                                            | 202        |
| <b>Chapter 5 Velocity Distributions in Turbulent Flow</b>                                     | <b>152</b> | §7.4 The Macroscopic Mechanical Energy Balance                                 | 203        |
| §5.1 Comparisons of Laminar and Turbulent Flows                                               | 154        | Ex. 7.4-1 Force Exerted by a Jet (Part b)                                      | 205        |
| §5.2 Time-Smoothed Equations of Change for Incompressible Fluids                              | 156        | §7.5 Estimation of the Viscous Loss                                            | 205        |
| §5.3 The Time-Smoothed Velocity Profile near a Wall                                           | 159        | Ex. 7.5-1 Power Requirement for Pipeline Flow                                  | 207        |
| §5.4 Empirical Expressions for the Turbulent Momentum Flux                                    | 162        | §7.6 Use of the Macroscopic Balances for Steady-State Problems                 | 209        |
| Ex. 5.4-1 Development of the Reynolds Stress Expression in the Vicinity of the Wall           | 164        | Ex. 7.6-1 Pressure Rise and Friction Loss in a Sudden Enlargement              | 209        |
| §5.5 Turbulent Flow in Ducts                                                                  | 165        | Ex. 7.6-2 Performance of a Liquid-Liquid Ejector                               | 210        |
| Ex. 5.5-1 Estimation of the Average Velocity in a Circular Tube                               | 166        | Ex. 7.6-3 Thrust on a Pipe Bend                                                | 212        |
| Ex. 5.5-2 Application of Prandtl's Mixing Length Formula to Turbulent Flow in a Circular Tube | 167        | Ex. 7.6-4 The Impinging Jet                                                    | 214        |
| Ex. 5.5-3 Relative Magnitude of Viscosity and Eddy Viscosity                                  | 167        | Ex. 7.6-5 Isothermal Flow of a Liquid through an Orifice                       | 215        |
| §5.6 <sup>o</sup> Turbulent Flow in Jets                                                      | 168        | §7.7 <sup>o</sup> Use of the Macroscopic Balances for Unsteady-State Problems  | 216        |
| Ex. 5.6-1 Time-Smoothed Velocity Distribution in a Circular Wall Jet                          | 168        | Ex. 7.7-1 Acceleration Effects in Unsteady Flow from a Cylindrical Tank        | 217        |
| Questions for Discussion                                                                      | 172        | Ex. 7.7-2 Manometer Oscillations                                               | 219        |
| Problems                                                                                      | 172        | §7.8 <sup>o</sup> Derivation of the Macroscopic Mechanical Energy Balance      | 221        |
| <b>Chapter 6 Interphase Transport in Isothermal Systems</b>                                   | <b>177</b> | Questions for Discussion                                                       | 223        |
| Problems                                                                                      | 172        | Problems                                                                       | 224        |
| §6.1 Definition of Friction Factors                                                           | 178        | <b>Chapter 8 Polymeric Liquids</b>                                             | <b>231</b> |
| §6.2 Friction Factors for Flow in Tubes                                                       | 179        |                                                                                |            |
| Ex. 6.2-1 Pressure Drop Required for a Given Flow Rate                                        | 183        | §8.1 Examples of the Behavior of Polymeric Liquids                             | 232        |
| Ex. 6.2-2 Flow Rate for a Given Pressure Drop                                                 | 183        | §8.2 Rheometry and Material Functions                                          | 236        |
| Ex. 6.2-3 Determination of the Diameter of a Falling Sphere                                   | 187        | §8.3 Non-Newtonian Viscosity and the Generalized Newtonian Models              | 240        |
| Ex. 6.2-4 Force Exerted by a Jet                                                              | 201        | Ex. 8.3-1 Laminar Flow of an Incompressible Power-Law Fluid in a Circular Tube | 242        |
| Ex. 6.2-5 Power Requirement for Pipeline Flow                                                 | 207        | Ex. 8.3-2 Flow of a Power-Law Fluid in a Narrow Slit                           | 243        |

|                                                                          |     |
|--------------------------------------------------------------------------|-----|
| Ex. 8.3-3 Tangential Annular Flow of a Power-Law Fluid                   | 244 |
| §8.4 <sup>o</sup> Elasticity and the Linear Viscoelastic Models          | 244 |
| Ex. 8.4-1 Small-Amplitude Oscillatory Motion                             | 247 |
| Ex. 8.4-2 Unsteady Viscoelastic Flow near an Oscillating Plate           | 248 |
| §8.5• The Corotational Derivatives and the Nonlinear Viscoelastic Models | 249 |
| Ex. 8.5-1 Material Functions for the Oldroyd 6-Constant Model            | 251 |
| §8.6• Molecular Theories for Polymeric Liquids                           | 253 |
| Ex. 8.6-1 Material Functions for the FENE-P Model                        | 255 |
| Questions for Discussion                                                 | 258 |
| Problems                                                                 | 258 |

## Part II Energy Transport

### Chapter 9 Thermal Conductivity and the Mechanisms of Energy Transport 263

|                                                                                     |     |
|-------------------------------------------------------------------------------------|-----|
| §9.1 Fourier's Law of Heat Conduction (Molecular Energy Transport)                  | 266 |
| Ex. 9.1-1 Measurement of Thermal Conductivity                                       | 270 |
| §9.2 Temperature and Pressure Dependence of Thermal Conductivity                    | 272 |
| Ex. 9.2-1 Effect of Pressure on Thermal Conductivity                                | 273 |
| §9.3 <sup>o</sup> Theory of Thermal Conductivity of Gases at Low Density            | 274 |
| Ex. 9.3-1 Computation of the Thermal Conductivity of a Monatomic Gas at Low Density | 277 |
| Ex. 9.3-2 Estimation of the Thermal Conductivity of a Polyatomic Gas at Low Density | 278 |
| Ex. 9.3-3 Prediction of the Thermal Conductivity of a Gas Mixture at Low Density    | 278 |
| §9.4 <sup>o</sup> Theory of Thermal Conductivity of Liquids                         | 279 |
| Ex. 9.4-1 Prediction of the Thermal Conductivity of a Liquid                        | 280 |
| §9.5 <sup>o</sup> Thermal Conductivity of Solids                                    | 280 |
| §9.6 <sup>o</sup> Effective Thermal Conductivity of Composite Solids                | 281 |
| §9.7 Convective Transport of Energy                                                 | 283 |
| §9.8 Work Associated with Molecular Motions                                         | 284 |
| Questions for Discussion                                                            | 286 |
| Problems                                                                            | 287 |

### Chapter 10 Shell Energy Balances and Temperature Distributions in Solids and Laminar Flow 290

|                                                                                                  |     |
|--------------------------------------------------------------------------------------------------|-----|
| §10.1 Shell Energy Balances; Boundary Conditions                                                 | 291 |
| §10.2 Heat Conduction with an Electrical Heat Source                                             | 292 |
| Ex. 10.2-1 Voltage Required for a Given Temperature Rise in a Wire Heated by an Electric Current | 295 |
| Ex. 10.2-2 Heated Wire with Specified Heat Transfer Coefficient and Ambient Air Temperature      | 295 |
| §10.3 Heat Conduction with a Nuclear Heat Source                                                 | 296 |
| §10.4 Heat Conduction with a Viscous Heat Source                                                 | 298 |
| §10.5 Heat Conduction with a Chemical Heat Source                                                | 300 |
| §10.6 Heat Conduction through Composite Walls                                                    | 303 |
| Ex. 10.6-1 Composite Cylindrical Walls                                                           | 305 |
| §10.7 Heat Conduction in a Cooling Fin                                                           | 307 |
| Ex. 10.7-1 Error in Thermocouple Measurement                                                     | 309 |
| §10.8 Forced Convection                                                                          | 310 |
| §10.9 Free Convection                                                                            | 316 |
| Questions for Discussion                                                                         | 319 |
| Problems                                                                                         | 320 |

### Chapter 11 The Equations of Change for Nonisothermal Systems 333

|                                                                                                                       |     |
|-----------------------------------------------------------------------------------------------------------------------|-----|
| §11.1 The Energy Equation                                                                                             | 333 |
| §11.2 Special Forms of the Energy Equation                                                                            | 336 |
| §11.3 The Boussinesq Equation of Motion for Forced and Free Convection                                                | 338 |
| §11.4 Use of the Equations of Change to Solve Steady-State Problems                                                   | 339 |
| Ex. 11.4-1 Steady-State Forced-Convection Heat Transfer in Laminar Flow in a Circular Tube                            | 342 |
| Ex. 11.4-2 Tangential Flow in an Annulus with Viscous Heat Generation                                                 | 342 |
| Ex. 11.4-3 Steady Flow in a Nonisothermal Film                                                                        | 343 |
| Ex. 11.4-4 Transpiration Cooling                                                                                      | 344 |
| Ex. 11.4-5 Free Convection Heat Transfer from a Vertical Plate                                                        | 346 |
| Ex. 11.4-6 Adiabatic Frictionless Processes in an Ideal Gas                                                           | 349 |
| Ex. 11.4-7 One-Dimensional Compressible Flow: Velocity, Temperature, and Pressure Profiles in a Stationary Shock Wave | 350 |

|                          |                                                                           |     |
|--------------------------|---------------------------------------------------------------------------|-----|
| §11.5                    | Dimensional Analysis of the Equations of Change for Nonisothermal Systems | 353 |
| Ex. 11.5-1               | Temperature Distribution about a Long Cylinder                            | 356 |
| Ex. 11.5-2               | Free Convection in a Horizontal Fluid Layer; Formation of Bénard Cells    | 358 |
| Ex. 11.5-3               | Surface Temperature of an Electrical Heating Coil                         | 360 |
| Questions for Discussion |                                                                           | 361 |
| Problems                 |                                                                           | 361 |

## Chapter 12 Temperature Distributions with More than One Independent Variable 374

|                          |                                                                                                                      |     |
|--------------------------|----------------------------------------------------------------------------------------------------------------------|-----|
| §12.1                    | Unsteady Heat Conduction in Solids                                                                                   | 374 |
| Ex. 12.1-1               | Heating of a Semi-Infinite Slab                                                                                      | 375 |
| Ex. 12.1-2               | Heating of a Finite Slab                                                                                             | 376 |
| Ex. 12.1-3               | Unsteady Heat Conduction near a Wall with Sinusoidal Heat Flux                                                       | 379 |
| Ex. 12.1-4               | Cooling of a Sphere in Contact with a Well-Stirred Fluid                                                             | 379 |
| §12.2 <sup>o</sup>       | Steady Heat Conduction in Laminar, Incompressible Flow                                                               | 381 |
| Ex. 12.2-1               | Laminar Tube Flow with Constant Heat Flux at the Wall                                                                | 383 |
| Ex. 12.2-2               | Laminar Tube Flow with Constant Heat Flux at the Wall: Asymptotic Solution for the Entrance Region                   | 384 |
| §12.3 <sup>o</sup>       | Steady Potential Flow of Heat in Solids                                                                              | 385 |
| Ex. 12.3-1               | Temperature Distribution in a Wall                                                                                   | 386 |
| §12.4 <sup>o</sup>       | Boundary Layer Theory for Nonisothermal Flow                                                                         | 387 |
| Ex. 12.4-1               | Heat Transfer in Laminar Forced Convection along a Heated Flat Plate (the von Kármán Integral Method)                | 388 |
| Ex. 12.4-2               | Heat Transfer in Laminar Forced Convection along a Heated Flat Plate (Asymptotic Solution for Large Prandtl Numbers) | 391 |
| Ex. 12.4-3               | Forced Convection in Steady Three-Dimensional Flow at High Prandtl Numbers                                           | 392 |
| Questions for Discussion |                                                                                                                      | 394 |
| Problems                 |                                                                                                                      | 395 |

## Chapter 13 Temperature Distributions in Turbulent Flow 407

|            |                                                                             |     |
|------------|-----------------------------------------------------------------------------|-----|
| §13.1      | Time-Smoothed Equations of Change for Incompressible Nonisothermal Flow     | 407 |
| §13.2      | The Time-Smoothed Temperature Profile near a Wall                           | 409 |
| §13.3      | Empirical Expressions for the Turbulent Heat Flux                           | 410 |
| Ex. 13.3-1 | An Approximate Relation for the Wall Heat Flux for Turbulent Flow in a Tube | 411 |

|                          |                                                                            |     |
|--------------------------|----------------------------------------------------------------------------|-----|
| §13.4 <sup>o</sup>       | Temperature Distribution for Turbulent Flow in Tubes                       | 411 |
| §13.5 <sup>o</sup>       | Temperature Distribution for Turbulent Flow in Jets                        | 415 |
| §13.6 <sup>•</sup>       | Fourier Analysis of Energy Transport in Tube Flow at Large Prandtl Numbers | 416 |
| Questions for Discussion |                                                                            | 421 |
| Problems                 |                                                                            | 421 |

## Chapter 14 Interphase Transport in Nonisothermal Systems 422

|                          |                                                                                                     |     |
|--------------------------|-----------------------------------------------------------------------------------------------------|-----|
| §14.1                    | Definitions of Heat Transfer Coefficients                                                           | 423 |
| Ex. 14.1-1               | Calculation of Heat Transfer Coefficients from Experimental Data                                    | 426 |
| §14.2                    | Analytical Calculations of Heat Transfer Coefficients for Forced Convection through Tubes and Slits | 428 |
| §14.3                    | Heat Transfer Coefficients for Forced Convection in Tubes                                           | 433 |
| Ex. 14.3-1               | Design of a Tubular Heater                                                                          | 437 |
| §14.4                    | Heat Transfer Coefficients for Forced Convection around Submerged Objects                           | 438 |
| §14.5                    | Heat Transfer Coefficients for Forced Convection through Packed Beds                                | 441 |
| §14.6 <sup>o</sup>       | Heat Transfer Coefficients for Free and Mixed Convection                                            | 442 |
| Ex. 14.6-1               | Heat Loss by Free Convection from a Horizontal Pipe                                                 | 445 |
| §14.7 <sup>o</sup>       | Heat Transfer Coefficients for Condensation of Pure Vapors on Solid Surfaces                        | 446 |
| Ex. 14.7-1               | Condensation of Steam on a Vertical Surface                                                         | 449 |
| Questions for Discussion |                                                                                                     | 449 |
| Problems                 |                                                                                                     | 450 |

## Chapter 15 Macroscopic Balances for Nonisothermal Systems 454

|                    |                                                                                                              |     |
|--------------------|--------------------------------------------------------------------------------------------------------------|-----|
| §15.1              | The Macroscopic Energy Balance                                                                               | 455 |
| §15.2              | The Macroscopic Mechanical Energy Balance                                                                    | 456 |
| §15.3              | Use of the Macroscopic Balances to Solve Steady-State Problems with Flat Velocity Profiles                   | 458 |
| Ex. 15.3-1         | The Cooling of an Ideal Gas                                                                                  | 459 |
| Ex. 15.3-2         | Mixing of Two Ideal Gas Streams                                                                              | 460 |
| §15.4              | The <i>d</i> -Forms of the Macroscopic Balances                                                              | 461 |
| Ex. 15.4-1         | Parallel- or Counter-Flow Heat Exchangers                                                                    | 462 |
| Ex. 15.4-2         | Power Requirement for Pumping a Compressible Fluid through a Long Pipe                                       | 464 |
| §15.5 <sup>o</sup> | Use of the Macroscopic Balances to Solve Unsteady-State Problems and Problems with Nonflat Velocity Profiles | 465 |

|                                                                                        |     |                                                                                                      |     |
|----------------------------------------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------|-----|
| Ex. 15.5-1 Heating of a Liquid in an Agitated Tank                                     | 466 | Ex. 17.2-3 Estimation of Binary Diffusivity at High Density                                          | 524 |
| Ex. 15.5-2 Operation of a Simple Temperature Controller                                | 468 | §17.3 <sup>o</sup> Theory of Diffusion in Gases at Low Density                                       | 525 |
| Ex. 15.5-3 Flow of Compressible Fluids through Heat Meters                             | 471 | Ex. 17.3-1 Computation of Mass Diffusivity for Low-Density Monatomic Gases                           | 528 |
| Ex. 15.5-4 Free Batch Expansion of a Compressible Fluid                                | 472 | §17.4 <sup>o</sup> Theory of Diffusion in Binary Liquids                                             | 528 |
| Questions for Discussion                                                               | 474 | Ex. 17.4-1 Estimation of Liquid Diffusivity                                                          | 530 |
| Problems                                                                               | 474 | §17.5 <sup>o</sup> Theory of Diffusion in Colloidal Suspensions                                      | 531 |
| <b>Chapter 16 Energy Transport by Radiation</b> 487                                    |     | §17.6 <sup>o</sup> Theory of Diffusion in Polymers                                                   | 532 |
| §16.1 The Spectrum of Electromagnetic Radiation                                        | 488 | §17.7 Mass and Molar Transport by Convection                                                         | 533 |
| §16.2 Absorption and Emission at Solid Surfaces                                        | 490 | §17.8 Summary of Mass and Molar Fluxes                                                               | 536 |
| §16.3 Planck's Distribution Law, Wien's Displacement Law, and the Stefan-Boltzmann Law | 493 | §17.9 <sup>o</sup> The Maxwell-Stefan Equations for Multicomponent Diffusion in Gases at Low Density | 538 |
| Ex. 16.3-1 Temperature and Radiation-Energy Emission of the Sun                        | 496 | Questions for Discussion                                                                             | 538 |
| §16.4 Direct Radiation between Black Bodies in Vacuo at Different Temperatures         | 497 | Problems                                                                                             | 539 |
| Ex. 16.4-1 Estimation of the Solar Constant                                            | 501 | <b>Chapter 18 Concentration Distributions in Solids and Laminar Flow</b> 543                         |     |
| Ex. 16.4-2 Radiant Heat Transfer between Disks                                         | 501 | §18.1 Shell Mass Balances; Boundary Conditions                                                       | 545 |
| §16.5 <sup>o</sup> Radiation between Nonblack Bodies at Different Temperatures         | 502 | §18.2 Diffusion through a Stagnant Gas Film                                                          | 545 |
| Ex. 16.5-1 Radiation Shields                                                           | 503 | Ex. 18.2-1 Diffusion with a Moving Interface                                                         | 549 |
| Ex. 16.5-2 Radiation and Free-Convection Heat Losses from a Horizontal Pipe            | 504 | Ex. 18.2-2 Determination of Diffusivity                                                              | 549 |
| Ex. 16.5-3 Combined Radiation and Convection                                           | 505 | Ex. 18.2-3 Diffusion through a Nonisothermal Spherical Film                                          | 550 |
| §16.6 <sup>o</sup> Radiant Energy Transport in Absorbing Media                         | 506 | §18.3 Diffusion with a Heterogeneous Chemical Reaction                                               | 551 |
| Ex. 16.6-1 Absorption of a Monochromatic Radiant Beam                                  | 507 | Ex. 18.3-1 Diffusion with a Slow Heterogeneous Reaction                                              | 553 |
| Questions for Discussion                                                               | 508 | §18.4 Diffusion with a Homogeneous Chemical Reaction                                                 | 554 |
| Problems                                                                               | 508 | Ex. 18.4-1 Gas Absorption with Chemical Reaction in an Agitated Tank                                 | 555 |
| <b>Part III Mass Transport</b>                                                         |     | §18.5 Diffusion into a Falling Liquid Film (Gas Absorption)                                          | 558 |
| <b>Chapter 17 Diffusivity and the Mechanisms of Mass Transport</b> 513                 |     | Ex. 18.5-1 Gas Absorption from Rising Bubbles                                                        | 560 |
| §17.1 Fick's Law of Binary Diffusion (Molecular Mass Transport)                        | 514 | §18.6 Diffusion into a Falling Liquid Film (Solid Dissolution)                                       | 562 |
| Ex. 17.1-1. Diffusion of Helium through Pyrex Glass                                    | 519 | §18.7 Diffusion and Chemical Reaction inside a Porous Catalyst                                       | 563 |
| Ex. 17.1-2 The Equivalence of $D_{AB}$ and $D_{BA}$                                    | 520 | §18.8 <sup>o</sup> Diffusion in a Three-Component Gas System                                         | 567 |
| §17.2 Temperature and Pressure Dependence of Diffusivities                             | 521 | Questions for Discussion                                                                             | 568 |
| Ex. 17.2-1 Estimation of Diffusivity at Low Density                                    | 523 | Problems                                                                                             | 568 |
| Ex. 17.2-2 Estimation of Self-Diffusivity at High Density                              | 523 | <b>Chapter 19 Equations of Change for Multicomponent Systems</b> 582                                 |     |
| §19.1 The Equations of Continuity for a Multicomponent Mixture                         | 582 | Ex. 19.1-1 Diffusion, Convection, and Chemical Reaction                                              | 585 |

|                          |                                                                                 |     |                                                                      |                                                                          |       |                                                       |     |
|--------------------------|---------------------------------------------------------------------------------|-----|----------------------------------------------------------------------|--------------------------------------------------------------------------|-------|-------------------------------------------------------|-----|
| §19.2                    | Summary of the Multicomponent Equations of Change                               | 586 | §20.5• “Taylor Dispersion” in Laminar Tube Flow                      | 643                                                                      |       |                                                       |     |
| §19.3                    | Summary of the Multicomponent Fluxes                                            | 590 | Questions for Discussion                                             | 647                                                                      |       |                                                       |     |
|                          | <i>Ex. 19.3-1 The Partial Molar Enthalpy</i>                                    | 591 | Problems                                                             | 648                                                                      |       |                                                       |     |
| §19.4                    | Use of the Equations of Change for Mixtures                                     | 592 | <b>Chapter 21 Concentration Distributions in Turbulent Flow</b> 657  |                                                                          |       |                                                       |     |
|                          | <i>Ex. 19.4-1 Simultaneous Heat and Mass Transport</i>                          | 592 | §21.1                                                                | Concentration Fluctuations and the Time-Smoothed Concentration           | 657   |                                                       |     |
|                          | <i>Ex. 19.4-2 Concentration Profile in a Tubular Reactor</i>                    | 595 | §21.2                                                                | Time-Smoothing of the Equation of Continuity of <i>A</i>                 | 658   |                                                       |     |
|                          | <i>Ex. 19.4-3 Catalytic Oxidation of Carbon Monoxide</i>                        | 596 | §21.3                                                                | Semi-Empirical Expressions for the Turbulent Mass Flux                   | 659   |                                                       |     |
|                          | <i>Ex. 19.4-4 Thermal Conductivity of a Polyatomic Gas</i>                      | 598 | §21.4 <sup>O</sup>                                                   | Enhancement of Mass Transfer by a First-Order Reaction in Turbulent Flow | 659   |                                                       |     |
| §19.5                    | Dimensional Analysis of the Equations of Change for Nonreacting Binary Mixtures | 599 | §21.5•                                                               | Turbulent Mixing and Turbulent Flow with Second-Order Reaction           | 663   |                                                       |     |
|                          | <i>Ex. 19.5-1 Concentration Distribution about a Long Cylinder</i>              | 601 | Questions for Discussion                                             | 667                                                                      |       |                                                       |     |
|                          | <i>Ex. 19.5-2 Fog Formation during Dehumidification</i>                         | 602 | Problems                                                             | 668                                                                      |       |                                                       |     |
|                          | <i>Ex. 19.5-3 Blending of Miscible Fluids</i>                                   | 604 | <b>Chapter 22 Interphase Transport in Nonisothermal Mixtures</b> 671 |                                                                          |       |                                                       |     |
| Questions for Discussion |                                                                                 |     |                                                                      | 605                                                                      | §22.1 | Definition of Transfer Coefficients in One Phase      | 672 |
| Problems                 |                                                                                 |     |                                                                      | 606                                                                      | §22.2 | Analytical Expressions for Mass Transfer Coefficients | 676 |

## Chapter 20 Concentration Distributions with More than One Independent Variable 612

|                    |                                                                                                         |     |                    |                                                                                     |     |
|--------------------|---------------------------------------------------------------------------------------------------------|-----|--------------------|-------------------------------------------------------------------------------------|-----|
| §20.1              | Time-Dependent Diffusion                                                                                | 613 | §22.3              | Correlation of Binary Transfer Coefficients in One Phase                            | 679 |
|                    | <i>Ex. 20.1-1 Unsteady-State Evaporation of a Liquid (the “Arnold Problem”)</i>                         | 613 |                    | <i>Ex. 22.3-1 Evaporation from a Freely Falling Drop</i>                            | 682 |
|                    | <i>Ex. 20.1-2 Gas Absorption with Rapid Reaction</i>                                                    | 617 |                    | <i>Ex. 22.3-2 The Wet and Dry Bulb Psychrometer</i>                                 | 683 |
|                    | <i>Ex. 20.1-3 Unsteady Diffusion with First-Order Homogeneous Reaction</i>                              | 619 |                    | <i>Ex. 22.3-3 Mass Transfer in Creeping Flow through Packed Beds</i>                | 685 |
|                    | <i>Ex. 20.1-4 Influence of Changing Interfacial Area on Mass Transfer at an Interface</i>               | 621 |                    | <i>Ex. 22.3-4 Mass Transfer to Drops and Bubbles</i>                                | 687 |
| §20.2 <sup>O</sup> | Steady-State Transport in Binary Boundary Layers                                                        | 623 | §22.4              | Definition of Transfer Coefficients in Two Phases                                   | 687 |
|                    | <i>Ex. 20.2-1 Diffusion and Chemical Reaction in Isothermal Laminar Flow along a Soluble Flat Plate</i> | 625 |                    | <i>Ex. 22.4-1 Determination of the Controlling Resistance</i>                       | 690 |
|                    | <i>Ex. 20.2-2 Forced Convection from a Flat Plate at High Mass-Transfer Rates</i>                       | 627 |                    | <i>Ex. 22.4-2 Interaction of Phase Resistances</i>                                  | 691 |
|                    | <i>Ex. 20.2-3 Approximate Analogies for the Flat Plate at Low Mass-Transfer Rates</i>                   | 632 |                    | <i>Ex. 22.4-3 Area Averaging</i>                                                    | 693 |
| §20.3•             | Steady-State Boundary-Layer Theory for Flow around Objects                                              | 633 | §22.5 <sup>O</sup> | Mass Transfer and Chemical Reactions                                                | 694 |
|                    | <i>Ex. 20.3-1 Mass Transfer for Creeping Flow around a Gas Bubble</i>                                   | 636 |                    | <i>Ex. 22.5-1 Estimation of the Interfacial Area in a Packed Column</i>             | 694 |
| §20.4•             | Boundary Layer Mass Transport with Complex Interfacial Motion                                           | 637 |                    | <i>Ex. 22.5-2 Estimation of Volumetric Mass Transfer Coefficients</i>               | 695 |
|                    | <i>Ex. 20.4-1 Mass Transfer with Nonuniform Interfacial Deformation</i>                                 | 641 |                    | <i>Ex. 22.5-3 Model-Insensitive Correlations for Absorption with Rapid Reaction</i> | 696 |
|                    | <i>Ex. 20.4-2 Gas Absorption with Rapid Reaction and Interfacial Deformation</i>                        | 642 | §22.6 <sup>O</sup> | Combined Heat and Mass Transfer by Free Convection                                  | 698 |

|                                                                                         |     |
|-----------------------------------------------------------------------------------------|-----|
| Ex. 22.6-1 Additivity of Grashof Numbers                                                | 698 |
| Ex. 22.6-2 Free-Convection Heat Transfer as a Source of Forced-Convection Mass Transfer | 698 |

|                    |                                                                                              |     |
|--------------------|----------------------------------------------------------------------------------------------|-----|
| §22.7 <sup>o</sup> | Effects of Interfacial Forces on Heat and Mass Transfer                                      | 699 |
|                    | Ex. 22.7-1 Elimination of Circulation in a Rising Gas Bubble                                 | 701 |
|                    | Ex. 22.7-2 Marangoni Instability in a Falling Film                                           | 702 |
| §22.8 <sup>o</sup> | Transfer Coefficients at High Net Mass Transfer Rates                                        | 703 |
|                    | Ex. 22.8-1 Rapid Evaporation of a Liquid from a Plane Surface                                | 710 |
|                    | Ex. 22.8-2 Correction Factors in Droplet Evaporation                                         | 711 |
|                    | Ex. 22.8-3 Wet-Bulb Performance Corrected for Mass-Transfer Rate                             | 711 |
|                    | Ex. 22.8-4 Comparison of Film and Penetration Models for Unsteady Evaporation in a Long Tube | 712 |
|                    | Ex. 22.8-5 Concentration Polarization in Ultrafiltration                                     | 713 |
| §22.9•             | Matrix Approximations for Multicomponent Mass Transport                                      | 716 |
|                    | Questions for Discussion                                                                     | 721 |
|                    | Problems                                                                                     | 722 |

## Chapter 23 Macroscopic Balances for Multicomponent Systems 726

|                    |                                                                                            |     |
|--------------------|--------------------------------------------------------------------------------------------|-----|
| §23.1              | The Macroscopic Mass Balances                                                              | 727 |
|                    | Ex. 23.1-1 Disposal of an Unstable Waste Product                                           | 728 |
|                    | Ex. 23.1-2 Binary Splitters                                                                | 730 |
|                    | Ex. 23.1-3 The Macroscopic Balances and Dirac's "Separative Capacity" and "Value Function" | 731 |
|                    | Ex. 23.1-4 Compartmental Analysis                                                          | 733 |
|                    | Ex. 23.1-5 Time Constants and Model Insensitivity                                          | 736 |
| §23.2 <sup>o</sup> | The Macroscopic Momentum and Angular Momentum Balances                                     | 738 |
| §23.3              | The Macroscopic Energy Balance                                                             | 738 |
| §23.4              | The Macroscopic Mechanical Energy Balance                                                  | 739 |
| §23.5              | Use of the Macroscopic Balances to Solve Steady-State Problems                             | 739 |
|                    | Ex. 23.5-1 Energy Balances for a Sulfur Dioxide Converter                                  | 739 |
|                    | Ex. 23.5-2 Height of a Packed-Tower Absorber                                               | 742 |
|                    | Ex. 23.5-3 Linear Cascades                                                                 | 746 |
|                    | Ex. 23.5-4 Expansion of a Reactive Gas Mixture through a Frictionless Adiabatic Nozzle     | 749 |
| §23.6 <sup>o</sup> | Use of the Macroscopic Balances to Solve Unsteady-State Problems                           | 752 |
|                    | Ex. 23.6-1 Start-Up of a Chemical Reactor                                                  | 752 |

|                                                  |     |
|--------------------------------------------------|-----|
| Ex. 23.6-2 Unsteady Operation of a Packed Column | 753 |
| Ex. 23.6-3 The Utility of Low-Order Moments      | 756 |

|                          |     |
|--------------------------|-----|
| Questions for Discussion | 758 |
| Problems                 | 759 |

## Chapter 24 Other Mechanisms for Mass Transport 764

|                    |                                                                     |     |
|--------------------|---------------------------------------------------------------------|-----|
| §24.1•             | The Equation of Change for Entropy                                  | 765 |
| §24.2•             | The Flux Expressions for Heat and Mass                              | 767 |
|                    | Ex. 24.2-1 Thermal Diffusion and the Clusius–Dickel Column          | 770 |
|                    | Ex. 24.2-2 Pressure Diffusion and the Ultra-centrifuge              | 772 |
| §24.3 <sup>o</sup> | Concentration Diffusion and Driving Forces                          | 774 |
| §24.4 <sup>o</sup> | Applications of the Generalized Maxwell–Stefan Equations            | 775 |
|                    | Ex. 24.4-1 Centrifugation of Proteins                               | 776 |
|                    | Ex. 24.4-2 Proteins as Hydrodynamic Particles                       | 779 |
|                    | Ex. 24.4-3 Diffusion of Salts in an Aqueous Solution                | 780 |
|                    | Ex. 24.4-4 Departures from Local Electroneutrality: Electro-Osmosis | 782 |
|                    | Ex. 24.4-5 Additional Mass-Transfer Driving Forces                  | 784 |

|                    |                                                       |     |
|--------------------|-------------------------------------------------------|-----|
| §24.5 <sup>o</sup> | Mass Transport across Selectively Permeable Membranes | 785 |
|--------------------|-------------------------------------------------------|-----|

|  |                                                                    |     |
|--|--------------------------------------------------------------------|-----|
|  | Ex. 24.5-1 Concentration Diffusion between Preexisting Bulk Phases | 788 |
|  | Ex. 24.5-2 Ultrafiltration and Reverse Osmosis                     | 789 |
|  | Ex. 24.5-3 Charged Membranes and Donnan Exclusion                  | 791 |

|                    |                                                      |     |
|--------------------|------------------------------------------------------|-----|
| §24.6 <sup>o</sup> | Mass Transport in Porous Media                       | 793 |
|                    | Ex. 24.6-1 Knudsen Diffusion                         | 795 |
|                    | Ex. 24.6-2 Transport from a Binary External Solution | 797 |

|                          |     |
|--------------------------|-----|
| Questions for Discussion | 798 |
| Problems                 | 799 |

## Postface 805

### Appendices

## Appendix A Vector and Tensor Notation 807

|      |                                                |     |
|------|------------------------------------------------|-----|
| §A.1 | Vector Operations from a Geometrical Viewpoint | 808 |
| §A.2 | Vector Operations in Terms of Components       | 810 |
|      | Ex. A.2-1 Proof of a Vector Identity           | 814 |

|      |                                                                     |     |
|------|---------------------------------------------------------------------|-----|
| §A.3 | Tensor Operations in Terms of Components                            | 815 |
| §A.4 | Vector and Tensor Differential Operations                           | 819 |
|      | <i>Ex. A.4-1 Proof of a Tensor Identity</i>                         | 822 |
| §A.5 | Vector and Tensor Integral Theorems                                 | 824 |
| §A.6 | Vector and Tensor Algebra in Curvilinear Coordinates                | 825 |
| §A.7 | Differential Operations in Curvilinear Coordinates                  | 829 |
|      | <i>Ex. A.7-1 Differential Operations in Cylindrical Coordinates</i> | 831 |
|      | <i>Ex. A.7-2 Differential Operations in Spherical Coordinates</i>   | 838 |
| §A.8 | Integral Operations in Curvilinear Coordinates                      | 839 |
| §A.9 | Further Comments on Vector–Tensor Notation                          | 841 |

---

## Appendix B Fluxes and the Equations of Change 843

|       |                                                                                                        |     |
|-------|--------------------------------------------------------------------------------------------------------|-----|
| §B.1  | Newton's Law of Viscosity                                                                              | 843 |
| §B.2  | Fourier's Law of Heat Conduction                                                                       | 845 |
| §B.3  | Fick's (First) Law of Binary Diffusion                                                                 | 846 |
| §B.4  | The Equation of Continuity                                                                             | 846 |
| §B.5  | The Equation of Motion in Terms of $\tau$                                                              | 847 |
| §B.6  | The Equation of Motion for a Newtonian Fluid with Constant $\rho$ and $\mu$                            | 848 |
| §B.7  | The Dissipation Function $\Phi_v$ for Newtonian Fluids                                                 | 849 |
| §B.8  | The Equation of Energy in Terms of $\mathbf{q}$                                                        | 849 |
| §B.9  | The Equation of Energy for Pure Newtonian Fluids with Constant $\rho$ and $k$                          | 850 |
| §B.10 | The Equation of Continuity for Species $\alpha$ in Terms of $\mathbf{j}_\alpha$                        | 850 |
| §B.11 | The Equation of Continuity for Species $A$ in Terms of $\omega_A$ for Constant $\rho \mathcal{D}_{AB}$ | 851 |

---

## Appendix C Mathematical Topics 852

|      |                                                          |     |
|------|----------------------------------------------------------|-----|
| §C.1 | Some Ordinary Differential Equations and Their Solutions | 852 |
|------|----------------------------------------------------------|-----|

|      |                                                    |     |
|------|----------------------------------------------------|-----|
| §C.2 | Expansions of Functions in Taylor Series           | 853 |
| §C.3 | Differentiation of Integrals (the Leibniz Formula) | 854 |
| §C.4 | The Gamma Function                                 | 855 |
| §C.5 | The Hyperbolic Functions                           | 856 |
| §C.6 | The Error Function                                 | 857 |

---

## Appendix D The Kinetic Theory of Gases 858

|      |                                                                |     |
|------|----------------------------------------------------------------|-----|
| §D.1 | The Boltzmann Equation                                         | 858 |
| §D.2 | The Equations of Change                                        | 859 |
| §D.3 | The Molecular Expressions for the Fluxes                       | 859 |
| §D.4 | The Solution to the Boltzmann Equation                         | 860 |
| §D.5 | The Fluxes in Terms of the Transport Properties                | 860 |
| §D.6 | The Transport Properties in Terms of the Intermolecular Forces | 861 |
| §D.7 | Concluding Comments                                            | 861 |

---

## Appendix E Tables for Prediction of Transport Properties 863

|      |                                                                            |     |
|------|----------------------------------------------------------------------------|-----|
| §E.1 | Intermolecular Force Parameters and Critical Properties                    | 864 |
| §E.2 | Functions for Prediction of Transport Properties of Gases at Low Densities | 866 |

---

## Appendix F Constants and Conversion Factors 867

|      |                        |     |
|------|------------------------|-----|
| §F.1 | Mathematical Constants | 867 |
| §F.2 | Physical Constants     | 867 |
| §F.3 | Conversion Factors     | 868 |

### Notation 872

### Author Index 877

### Subject Index 885