

Table of Contents

<i>Preface</i>	xi
<i>List of Contributors</i>	xiii
1. DOCUMENTATION AND GENERAL CALIBRATION	1
Introduction	1
Report Preparation	1
Sections of the Report	3
<i>Title Page</i>	5
<i>Table of Contents</i>	5
<i>Abstract</i>	5
<i>Introduction</i>	6
<i>Theory</i>	6
<i>Equipment and Materials</i>	6
<i>Experimental Procedure</i>	7
<i>Results</i>	7
<i>Discussion of Results</i>	7
<i>Conclusions</i>	8
<i>Recommendations</i>	8
<i>Nomenclature</i>	8
<i>References</i>	8
<i>Appendices</i>	9
Standard Forms	9
<i>Equations</i>	9
<i>References to Literature</i>	10
Abbreviations	10
Numbers	11
Hyphens	11
Tables, Figures and Graphs	11
Temperature	13
<i>The Fahrenheit and Celsius Scales</i>	13

<i>Absolute Temperature</i>	13
Pressure	14
<i>Definition of Pressure</i>	14
<i>Barometric Pressure</i>	14
<i>Torricelli Barometer</i>	14
<i>Fortin Barometer</i>	14
<i>Aneroid Barometer</i>	15
<i>Gauge Pressure</i>	17
<i>Absolute Pressure</i>	17
Flow Meters	18
<i>Fixed Area Meters</i>	18
<i>Variable Area Meters</i>	20
<i>Velocity Meters</i>	21
<i>Mass Flow Meters—Secondary Velocity Standard</i>	26
<i>Volume Flow Meters</i>	26
Gaseous Sampling	29
<i>Gas Bag Integrated Samples</i>	29
<i>Absorption of Gases</i>	32
Standard Test Gas	40
<i>Introduction</i>	40
<i>Static Systems</i>	41
<i>Dynamic Systems</i>	45
Particle Sampling	50
<i>Particle Size Distribution</i>	50
<i>Bulk Density and Specific Gravity—Experiment</i>	53
<i>Optical Microscopy—Experiment</i>	56
<i>Size Distribution (Bahco Classifier)—Experiment</i>	60
<i>Sieve Analysis—Experiment</i>	66
Safety	66
<i>Introduction</i>	66
<i>General Procedures</i>	68
<i>Safety Training</i>	68
<i>Medical Monitoring Program</i>	69
<i>Written Safety Procedures</i>	69
<i>Common Hazards</i>	69
<i>Confined Area Entry</i>	79
2. CALIBRATION PROCEDURES AND EXPERIMENTS	
Calibration of Flow Measuring Devices	83
<i>Calibration of a Wet Test Meter—Experiment</i>	83
<i>Calibration of a Mass Flow Meter—Experiment</i>	89
<i>Calibration of a Rotameter at Reduced Pressure—Experiment</i>	92

<i>Calibration of a Limiting Orifice—Experiment</i>	94
<i>Calibration of a Dry Test Meter—Experiment</i>	99
<i>Calibration of a Rotameter—Experiment</i>	101
Gas Flow Model Studies—Exercise (Based on IGCI Publication No. EP-7)	104
3. AMBIENT AIR SAMPLING	113
High-Volume Sampling for Total Suspended Particulate Matter—Experiment	113
<i>Background</i>	113
<i>Filter Media</i>	114
<i>USEPA High-Volume Sampling Procedure</i>	117
<i>Experiment General</i>	121
<i>Procedure (Condensed from Illinois EPA Standard Operating Procedure FO-053)</i>	122
<i>Discussion Points</i>	125
Flow Calibration of a High-Volume Sampler Particulate Collection Device—Experiment	125
<i>Pre-Audit Procedures (Condensed from Illinois EPA Standard Operating Procedure QA-014)</i>	126
<i>Audit Procedures</i>	127
<i>Post-Audit Procedures</i>	127
<i>Calculations</i>	128
Extraction Procedures for Lead, Cadmium, Arsenic Sulfates and Nitrates from Air Filters	128
<i>Filter Preparation Procedures</i>	128
<i>Extraction Procedure for Pb, Cd and As</i>	131
<i>Sulfates in Air Filters</i>	132
<i>Nitrates in Air Filters</i>	137
<i>Lead Analysis—Experiment</i>	140
Continuous Carbon Monoxide Analyzer—Experiment	142
<i>Background</i>	142
<i>Procedures (Condensed from Illinois EPA Procedures FO-002 and QA-050)</i>	143
Continuous NO ₂ Monitor Calibration—Experiment	147
<i>Introduction</i>	147
<i>Experiment 1—Preparation of NO Calibration Curve</i>	147
<i>Experiment 2—Determination of the Converter Efficiency</i>	150
<i>Experiment 3—Preparation of NO₂ Static Test Atmosphere</i>	152
<i>Operation of the "Thermo Electron" Chemiluminescent NO/NO_x Analyzer</i>	155
Ozone in the Atmosphere—Experiment	156

<i>Laboratory Objectives</i>	156
<i>Principle of Measurement</i>	157
<i>Calibration of Ozone Monitor</i>	157
<i>Procedure</i>	158
Methane in Air—Experiment	163
<i>Introduction</i>	163
<i>Range and Limit of Detection</i>	163
<i>Interferences</i>	163
<i>Precision and Accuracy</i>	163
<i>Advantages and Disadvantages of the Method</i>	164
<i>Apparatus</i>	164
<i>Reagents</i>	164
<i>Procedure</i>	165
<i>Calibration and Standards</i>	165
<i>Calculations</i>	167
<i>Other AIHL Secondary Standards</i>	167
Unique Aerosol Sampling	168
<i>Bioaerosol Samplers</i>	168
<i>Aerosol Collecting of Multi-Layer Snow-Covered Samples</i>	170
4. SOURCE SAMPLING	173
<i>Introduction</i>	173
<i>Source-Sampling Purposes</i>	173
<i>Legal Use of Source-Sampling Information</i>	173
<i>Procedure for Leak Checking Source Sampling Trains</i>	175
<i>Purpose</i>	175
<i>Assembling Train Components</i>	175
<i>Leak Checks</i>	176
<i>Method 5 for Particulates—Experiment</i>	177
<i>Introduction</i>	177
<i>Isokinetic Sampling</i>	177
<i>EPA Sampling Train and Method 5 Highlights</i>	177
<i>Procedure</i>	182
<i>Methods 1–4 Source Sampling</i>	187
<i>Introduction</i>	187
5. SAMPLING AND ANALYSIS OF TOXIC COMPOUNDS IN AIR	199
<i>Sampling Methods</i>	199
<i>Background—Important Chemical and Physical Properties</i>	199
<i>Methods for Gas Phase Components</i>	200

6. ODOROUS MATERIALS	213
Testing Olfactory Sensitivity	213
Introduction	213
<i>Appendix A: Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere (High-Volume Method)</i>	221
<i>Appendix B: Reference Method for the Determination of Lead in Suspended Particulate Matter Collected from Ambient Air</i>	241
<i>Index</i>	253