
CONTENTS

Preface	xi
Abbreviations and Acronyms	xv
1 Chemistry in Alternative Reaction Media	1
1.1 Economic and Political Considerations	2
1.2 Why Do Things Dissolve?	6
1.3 Solvent Properties and Solvent Classification	8
1.3.1 Density	8
1.3.2 Mass Transport	9
1.3.3 Boiling Point, Melting Point and Volatility	10
1.3.4 Solvents as Heat-Transfer Media	11
1.3.5 Cohesive Pressure, Internal Pressure, and Solubility Parameter	11
1.4 Solvent Polarity	13
1.4.1 Dipole Moment and Dispersive Forces	14
1.4.2 Dielectric Constant	14
1.4.3 Electron Pair Donor and Acceptor Numbers	16
1.4.4 Empirical Polarity Scales	17
1.4.5 E_T^N and $E_T(30)$ Parameters	18
1.4.6 Kamlet–Taft Parameters	21
1.4.7 Hydrogen Bond Donor (HBD) and Hydrogen Bond Acceptor (HBA) Solvents	23
1.5 The Effect of Solvent Polarity on Chemical Systems	24
1.5.1 The Effect of Solvent Polarity on Chemical Reactions	24
1.5.2 The Effect of Solvent Polarity on Equilibria	26
1.6 What is Required from Alternative Solvent Strategies?	28
References	30
2 Multiphasic Solvent Systems	33
2.1 An Introduction to Multiphasic Chemistry	33
2.1.1 The Traditional Biphasic Approach	34
2.1.2 Temperature Dependent Solvent Systems	34
2.1.3 Single- to Two-Phase Systems	35
2.1.4 Multiphasic Systems	35
2.2 Solvent Combinations	36
2.2.1 Water	37
2.2.2 Fluorous Solvents	38

2.2.3	Ionic Liquids	38
2.2.4	Supercritical Fluids and Other Solvent Combinations	38
2.3	Benefits and Problems Associated with Multiphasic Systems	39
2.3.1	Partially Miscible Liquids	40
2.4	Kinetics of Homogeneous Reactions	43
2.4.1	Rate is Independent of Stoichiometry	44
2.4.2	Rate is Determined by the Probability of Reactants Meeting	45
2.4.3	Rate is Measured by the Concentration of the Reagents	45
2.4.4	Catalysed Systems	47
2.5	Kinetics of Biphasic Reactions	47
2.5.1	The Concentration of Reactants in Each Phase is Affected by Diffusion	47
2.5.2	The Concentration of the Reactants and Products in the Reacting Phase is Determined by Their Partition Coefficients	49
2.5.3	The Partition Coefficients of the Reactants and Products May Alter the Position of the Equilibrium	50
2.5.4	Effect of Diffusion on Rate	53
2.5.5	Determining the Rate of a Reaction in a Biphasic System	54
2.6	Conclusions	55
	References	55
3	Reactions in Fluorous Media	57
3.1	Introduction	57
3.2	Properties of Perfluorinated Solvents	58
3.3	Designing Molecules for Fluorous Compatibility	60
3.4	Probing the Effect of Perfluoroalkylation on Ligand Properties	64
3.5	Partition Coefficients	66
3.6	Liquid–Liquid Extractions	67
3.7	Solid Separations	68
3.8	Conclusions	71
	References	71
4	Ionic Liquids	75
4.1	Introduction	75
4.1.1	The Cations and Anions	77
4.1.2	Synthesis of Ionic Liquids	77
4.2	Physical Properties of Ionic Liquids	80

4.3	Benefits and Problems Associated with Using Ionic Liquids in Synthesis	88
4.4	Catalyst Design	90
4.5	Conclusions	92
	References	92
5	Reactions in Water	95
5.1	The Structure and Properties of Water	95
5.1.1	The Structure of Water	95
5.1.2	Near-Critical Water	99
5.1.3	The Hydrophobic Effect	99
5.1.4	The Salt Effect	100
5.2	The Benefits and Problems Associated with Using Water in Chemical Synthesis	101
5.3	Organometallic Reactions in Water	103
5.4	Aqueous Biphasic Catalysis	104
5.4.1	Ligands for Aqueous–Organic Biphasic Catalysis	104
5.5	Phase Transfer Catalysis	109
5.5.1	The Transfer of Nucleophiles into Organic Solvents	112
5.5.2	Mechanisms of Nucleophilic Substitutions Under Phase Transfer Conditions	112
5.5.3	The Rates of Phase Transfer Reactions	114
5.5.4	Using Inorganic Reagents in Organic Reactions	119
5.6	Organometallic Catalysis under Phase Transfer Conditions	122
5.7	Triphase Catalysis	123
5.7.1	Mixing Efficiency in Solid–Liquid Reactions	126
5.8	Conclusions	126
	References	126
6	Supercritical Fluids	131
6.1	Introduction	131
6.2	Physical Properties	132
6.3	Local Density Augmentation	135
6.4	Supercritical Fluids as Replacement Solvents	136
6.5	Reactor Design	138
6.6	Spectroscopic Analysis of Supercritical Media	141
6.6.1	Vibrational Spectroscopy	141
6.6.2	NMR Spectroscopy	142
6.7	Reactions in Supercritical Media	143
6.8	Conclusions	145
	References	146
7	Diels–Alder Reactions in Alternative Media	149
7.1	Diels–Alder Reactions in Water	150

7.2	Diels–Alder Reactions in Perfluorinated Solvents	153
7.3	Diels–Alder Reactions in Ionic Liquids	153
7.4	Diels–Alder Reactions in Supercritical Carbon Dioxide	155
7.5	Conclusions	156
	References	156
8	Hydrogenation and Hydroformylation Reactions in Alternative Solvents	
8.1	Introduction	159
8.2	Hydrogenation of Simple Alkenes and Arenes	161
8.2.1	Hydrogenation in Water	163
8.2.2	Hydrogenation in Ionic Liquids	166
8.2.3	Hydrogenation in Fluorous Solvents	169
8.2.4	Hydrogenation in Supercritical Fluids	170
8.3	Hydroformylation Reactions in Alternative Media	171
8.3.1	Hydroformylation in Water	171
8.3.2	Hydroformylation in Ionic Liquids	172
8.3.3	Hydroformylation in Fluorous Solvents	174
8.3.4	Hydroformylation in Supercritical Fluids	178
8.4	Conclusions	179
	References	179
9	From Alkanes to CO₂: Oxidation in Alternative Reaction Media	
9.1	Oxidation of Alkanes	181
9.2	Oxidation of Alkenes	183
9.3	Oxidation of Alcohols	184
9.4	Oxidation of Aldehydes and Ketones	188
9.5	Destructive Oxidation	190
9.6	Conclusions	191
	References	192
10	Carbon–Carbon Bond Formation, Metathesis and Polymerization	
10.1	Carbon–Carbon Coupling Reactions	195
10.1.1	Heck Coupling Reactions	196
10.1.2	Suzuki Coupling Reactions	199
10.1.3	Reactions Involving the Formation of C=C Double Bonds	201
10.2	Metathesis Reactions	202
10.2.1	Ring Opening Metathesis Polymerization	202
10.2.2	Ring Closing Metathesis	204
10.3	Polymerization Reactions in Alternative Reaction Media	205
10.3.1	Polymerization Reactions in Water	206

10.3.2	Polymerization Reactions in Supercritical Carbon Dioxide	208
10.3.3	Polymerization in Fluorous Solvents	214
10.4	Conclusions	215
	References	215
11	Alternative Reaction Media in Industrial Processes	217
11.1	Obstacles and Opportunities for Alternative Media	217
11.2	Reactor Considerations for Alternative Media	219
11.2.1	Batch Reactors	219
11.2.2	Flow Reactors	220
11.2.3	New Technology Suitable for Multiphasic Reactions	222
11.3	Industrial Applications of Alternative Solvent Systems	223
11.3.1	The Development of the First Aqueous–Organic Biphasic Hydroformylation Plant	224
11.3.2	Other Examples of Processes Using Water as a Solvent	227
11.3.3	Scale-Up of PTC Systems	227
11.3.4	Thomas Swan Supercritical Fluid Plant	229
11.3.5	Other Applications of Supercritical Carbon Dioxide	230
11.4	Outlook for Fluorous Solvents and Ionic Liquids	232
11.5	Conclusions	233
	References	234
Index		237