

Contents

1	INTRODUCTION	1
1-1	Types of Polymers and Polymerizations	1
<i>1-1a</i>	<i>Polymer Composition and Structure, 1</i>	
<i>1-1b</i>	<i>Polymerization Mechanism, 7</i>	
1-2	Nomenclature of Polymers	10
<i>1-2a</i>	<i>Nomenclature Based on Source, 10</i>	
<i>1-2b</i>	<i>Nomenclature Based on Structure (Non-IUPAC), 11</i>	
<i>1-2c</i>	<i>IUPAC Structure-Based Nomenclature System, 12</i>	
<i>1-2d</i>	<i>Trade and Nonnames, 17</i>	
1-3	Linear, Branched, and Crosslinked Polymers	18
1-4	Molecular Weight	20
1-5	Physical State	25
<i>1-5a</i>	<i>Crystalline and Amorphous Behavior, 25</i>	
<i>1-5b</i>	<i>Determinants of Polymer Crystallinity, 28</i>	
<i>1-5c</i>	<i>Thermal Transitions, 29</i>	
1-6	Applications of Polymers	33
<i>1-6a</i>	<i>Mechanical Properties, 33</i>	
<i>1-6b</i>	<i>Elastomers, Fibers, Plastics, 35</i>	
2	STEP POLYMERIZATION	40
2-1	Reactivity of Functional Groups	41

2-1a	<i>Basis for Analysis of Polymerization Kinetics</i> , 41
2-1b	<i>Experimental Evidence</i> , 43
2-1c	<i>Theoretical Considerations</i> , 44
2-1d	<i>Equivalence of Groups in Bifunctional Reactants</i> , 45
2-2	Kinetics of Step Polymerization 46
2-2a	<i>Self-Catalyzed Polymerization</i> , 48
2-2a-1	<i>Experimental Observations</i> , 49
2-2a-2	<i>Reasons for Nonlinearity in Third-Order Plot</i> , 51
2-2a-3	<i>Molecular Weight of Polymer</i> , 54
2-2b	<i>External Catalysis of Polymerization</i> , 55
2-2c	<i>Step Polymerizations Other Than Polyesterification: Catalyzed versus Uncatalyzed</i> , 57
2-2d	<i>Nonequivalence of Functional Groups in Polyfunctional Reagents</i> , 59
2-2d-1	<i>Examples of Nonequivalence</i> , 59
2-2d-2	<i>Kinetics</i> , 61
2-3	Accessibility of Functional Groups 68
2-4	Equilibrium Considerations 70
2-4a	<i>Closed System</i> , 70
2-4b	<i>Open, Driven System</i> , 73
2-4c	<i>Kinetics of Reversible Polymerization</i> , 75
2-5	Cyclization Versus Linear Polymerization 77
2-5a	<i>Possible Cyclization Reactions</i> , 77
2-5b	<i>Thermodynamic and Kinetic Considerations</i> , 78
2-5c	<i>Other Considerations</i> , 81
2-6	Molecular Weight Control in Linear Polymerization 82
2-6a	<i>Need for Stoichiometric Control</i> , 82
2-6b	<i>Quantitative Aspects</i> , 83
2-6c	<i>Kinetics of Nonstoichiometric Polymerization</i> , 87
2-7	Molecular Weight Distribution in Linear Polymerization 88

2-7a <i>Derivation of Size Distributions</i> , 88	
2-7b <i>Breadth of Molecular Weight Distribution</i> , 91	
2-7c <i>Interchange Reactions</i> , 92	
2-7d <i>Experimental Verification</i> , 92	
2-7e <i>Alternate Approaches for Molecular Weight Distribution</i> , 93	
2-7f <i>MWD for Functional Groups of Unequal Reactivity</i> , 95	
2-8 Process Conditions	96
2-8a <i>Physical Nature of Polymerization Systems</i> , 96	
2-8b <i>Different Reactant Systems</i> , 98	
2-8c <i>Interfacial Polymerization</i> , 99	
2-8c-1 <i>Description of Process</i> , 99	
2-8c-2 <i>Utility</i> , 102	
2-8d <i>Polyesters</i> , 102	
2-8e <i>Polyamides</i> , 105	
2-8f <i>Polyurethanes</i> , 108	
2-8g <i>Polysiloxanes</i> , 109	
2-9 Multichain Polymerization	109
2-9a <i>Branching</i> , 109	
2-9b <i>Molecular Weight Distribution</i> , 110	
2-10 Crosslinking	112
2-10a <i>Carothers Equation: $\bar{X} \rightarrow \infty$</i> , 113	
2-10a-1 <i>Equivalent Amounts of Reactants</i> , 113	
2-10a-2 <i>Extension to Nonequivalent Reactant Mixtures</i> , 115	
2-10b <i>Statistical Approach to Gelation: $\bar{X}_w \rightarrow \infty$</i> , 116	
2-10c <i>Experimental Gel Points</i> , 120	
2-10d <i>Extensions of Statistical Approach</i> , 121	
2-11 Molecular Weight Distributions in Nonlinear Polymerizations	124

2-12	Crosslinking Technology	126
2-12a	<i>Random Prepolymers, 127</i>	
2-12a-1	<i>Polyesters, 127</i>	
2-12a-2	<i>Formaldehyde Polymers, 128</i>	
2-12b	<i>Structoset Prepolymers, 135</i>	
2-12b-1	<i>Diol Prepolymers, 135</i>	
2-12b-2	<i>Epoxy Prepolymers, 136</i>	
2-12b-3	<i>Unsaturated Polyesters, 138</i>	
2-12b-4	<i>Phenol-Formaldehyde Polymers, 139</i>	
2-13	Step Copolymerization	140
2-13a	<i>Types of Copolymers, 140</i>	
2-13b	<i>Methods of Synthesizing Copolymers, 141</i>	
2-13c	<i>Utility of Copolymerization, 144</i>	
2-14	Newer Types of Step Polymerizations	145
2-14a	<i>Presently Available Polymers, 146</i>	
2-14a-1	<i>Polycarbonate, 146</i>	
2-14a-2	<i>Aromatic Polysulfone, 148</i>	
2-14a-3	<i>Aromatic Polyether, 149</i>	
2-14a-4	<i>Aromatic Polysulfide, 151</i>	
2-14a-5	<i>Aromatic Polyamides, 152</i>	
2-14a-6	<i>Aromatic Polyimides, 153</i>	
2-14b	<i>Research Polymers, 155</i>	
2-14b-1	<i>Polybenzimidazoles, 156</i>	
2-14b-2	<i>Polybenzoxazoles, Polybenzothiazoles, Polyoxadiazoles, and Polytriazoles, 157</i>	
2-14b-3	<i>Polyquinoxalines, 159</i>	
2-14b-4	<i>Polyimidazopyrrolones, 161</i>	
2-14b-5	<i>Oxidative Coupling Polymerization, 162</i>	
2-14b-6	<i>Friedel-Crafts Polymerization, 163</i>	
2-14b-7	<i>Cycloaddition or Four-Center Polymerization, 163</i>	
2-14b-8	<i>Polymerization by 1,3-Dipolar Addition, 164</i>	
2-14b-9	<i>Spiro Structures, 165</i>	
2-14b-10	<i>Inorganic and Semi-Inorganic Polymers, 165</i>	

3 RADICAL CHAIN POLYMERIZATION	179
3-1 Nature of Radical Chain Polymerization	179
3-1a <i>Comparison of Chain and Step Polymerization</i> , 179	
3-1b <i>Radical versus Ionic Chain Polymerizations</i> , 180	
3-1b-1 <i>General Considerations of Polymerizability</i> , 180	
3-1b-2 <i>Effects of Substituents</i> , 181	
3-2 Structural Arrangement of Monomer Units	184
3-2a <i>Possible Modes of Propagation</i> , 184	
3-2b <i>Experimental Evidence</i> , 185	
3-2c <i>Synthesis of Head-to-Head Polymers</i> , 186	
3-3 Rate of Radical Chain Polymerization	186
3-3a <i>Sequence of Events</i> , 186	
3-3b <i>Rate Expression</i> , 188	
3-3c <i>Experimental Determination of R_p</i> , 190	
3-3c-1 <i>Physical Separation and Isolation of Reaction Product</i> , 190	
3-3c-2 <i>Chemical and Spectroscopic Analysis</i> , 191	
3-3c-3 <i>Dilatometry</i> , 192	
3-3c-4 <i>Other Methods</i> , 193	
3-4 Initiation	194
3-4a <i>Thermal Decomposition of Initiators</i> , 194	
3-4a-1 <i>Types of Initiators</i> , 194	
3-4a-2 <i>Kinetics of Initiation and Polymerization</i> , 197	
3-4a-3 <i>Dependence of Polymerization Rate on Initiator</i> , 198	
3-4a-4 <i>Dependence of Polymerization Rate on Monomer</i> , 200	
3-4b <i>Redox Initiation</i> , 201	
3-4b-1 <i>Types of Redox Initiators</i> , 201	
3-4b-2 <i>Rate of Redox Polymerization</i> , 204	
3-4c <i>Photochemical Initiation</i> , 205	
3-4c-1 <i>Bulk Monomer</i> , 206	

3-4c-2	<i>Irradiation of Thermal and Redox Initiators</i> , 206
3-4c-3	<i>Rate of Photopolymerization</i> , 209
3-4d	<i>Initiation by Ionizing Radiations</i> , 212
3-4e	<i>Pure Thermal Initiation</i> , 214
3-4f	<i>Other Methods of Initiation</i> , 215
3-4f-1	<i>Electroinitiation</i> , 215
3-4f-2	<i>Plasma</i> , 215
3-4g	<i>Initiator Efficiency</i> , 215
3-4g-1	<i>Definition of f</i> , 215
3-4g-2	<i>Mechanism of $f < 1$: Cage Effect</i> , 216
3-4g-3	<i>Experimental Determination of f</i> , 219
3-5	Molecular Weight 223
3-5a	<i>Kinetic Chain Length</i> , 223
3-5b	<i>Mode of Termination</i> , 224
3-6	Chain Transfer 226
3-6a	<i>Effect of Chain Transfer</i> , 226
3-6b	<i>Transfer to Monomer and Initiator</i> , 228
3-6b-1	<i>Determination of C_M and C_I</i> , 228
3-6b-2	<i>Monomer Transfer Constants</i> , 230
3-6b-3	<i>Initiator Transfer Constants</i> , 232
3-6c	<i>Transfer to Chain Transfer Agent</i> , 233
3-6c-1	<i>Determination of C_S</i> , 233
3-6c-2	<i>Structure and Reactivity</i> , 234
3-6c-3	<i>Applications of Chain Transfer Agents</i> , 238
3-6d	<i>Chain Transfer to Polymer</i> , 238
3-7	Inhibition and Retardation 242
3-7a	<i>Kinetics of Inhibition or Retardation</i> , 243
3-7b	<i>Types of Inhibitors and Retarders</i> , 246
3-7c	<i>Autoinhibition of Allylic Monomers</i> , 250
3-8	Determination of Absolute Rate Constants 251
3-8a	<i>Non-Steady-State Kinetics</i> , 251
3-8b	<i>Rotating Sector Method</i> , 254

<i>3-8c Typical Values of Reaction Parameters,</i>	257
3-9 Energetic Characteristics	259
<i>3-9a Activation Energy and Frequency Factor,</i>	259
<i>3-9a-1 Rate of Polymerization,</i>	260
<i>3-9a-2 Degree of Polymerization,</i>	262
<i>3-9b Thermodynamics of Polymerization,</i>	263
<i>3-9b-1 Significance of ΔG, ΔH, and ΔS,</i>	263
<i>3-9b-2 Effect of Monomer Structure,</i>	265
<i>3-9b-3 Polymerization of 1,2-Disubstituted Ethylenes,</i>	266
<i>3-9c Polymerization-Depolymerization Equilibria,</i>	268
<i>3-9c-1 Ceiling Temperature,</i>	268
<i>3-9c-2 Floor Temperature,</i>	271
3-10 Autoacceleration	271
<i>3-10a Course of Polymerization,</i>	271
<i>3-10b Diffusion-Controlled Termination,</i>	273
<i>3-10c Effect of Reaction Conditions,</i>	275
<i>3-10d Related Phenomena,</i>	276
<i>3-10d-1 Occlusion (Heterogeneous) Polymerization,</i>	276
<i>3-10d-2 Template or Matrix Polymerization,</i>	277
<i>3-10e Dependence of Polymerization Rate on Initiator and Monomer,</i>	277
<i>3-10f Other Accelerative Phenomena,</i>	278
3-11 Molecular Weight Distribution	279
<i>3-11a Low-Conversion Polymerization,</i>	279
<i>3-11b High-Conversion Polymerization,</i>	281
3-12 Effect of Pressure	281
<i>3-12a Effect on Rate Constants,</i>	282
<i>3-12a-1 Volume of Activation,</i>	282
<i>3-12a-2 Rate of Polymerization,</i>	283
<i>3-12a-3 Degree of Polymerization,</i>	284
<i>3-12b Thermodynamics of Polymerization,</i>	285

<i>3-12c Other Effects of Pressure, 286</i>	
3-13 Process Conditions 286	
<i>3-13a General Considerations, 286</i>	
<i>3-13a-1 Bulk (Mass) Polymerization, 286</i>	
<i>3-13a-2 Solution Polymerization, 287</i>	
<i>3-13a-3 Heterogeneous Polymerization, 287</i>	
<i>3-13a-4 Other Processes, 288</i>	
<i>3-13b Specific Commercial Polymers, 288</i>	
<i>3-13b-1 Polyethylene, 288</i>	
<i>3-13b-2 Polystyrene, 290</i>	
<i>3-13b-3 Vinyl Family, 292</i>	
<i>3-13b-4 Acrylic Family, 294</i>	
<i>3-13b-5 Fluoropolymers, 296</i>	
<i>3-13b-6 Polymerization of Dienes, 297</i>	
<i>3-13b-7 Miscellaneous Commercial Polymers, 298</i>	
<i>3-13c Other Polymerizations, 301</i>	
<i>3-13c-1 Organometallic Polymers, 301</i>	
<i>3-13c-2 Functional Polymers, 302</i>	
<i>3-13c-3 Acetylene Monomers, 303</i>	
<i>3-13c-4 Poly(carbon suboxide), 304</i>	
4 EMULSION POLYMERIZATION 319	
4-1 Description of Process 319	
<i>4-1a Utility, 319</i>	
<i>4-1b Qualitative Picture, 320</i>	
<i>4-1b-1 Components and Their Locations, 320</i>	
<i>4-1b-2 Site of Polymerization, 321</i>	
<i>4-1b-3 Progress of Polymerization, 323</i>	
4-2 Quantitative Aspects 325	
<i>4-2a Rate of Polymerization, 325</i>	
<i>4-2b Degree of Polymerization, 329</i>	
<i>4-2c Number of Polymer Particles, 331</i>	
4-3 Other Characteristics of Emulsion Polymerization 332	

- 4-3a *Initiators*, 332
- 4-3b *Surfactants*, 333
- 4-3c *Other Components*, 333
- 4-3d *Propagation and Termination Rate Constants*, 334
- 4-3e *Energetics*, 334
- 4-3f *Molecular Weight and Particle Size Distributions*, 334
- 4-3g *Surfactant-Free Emulsion Polymerization*, 335
- 4-3h *Other Theories*, 336
- 4-3i *Nonaqueous Emulsion Polymerization*, 336
- 4-3j *Semicontinuous and Continuous Processes*, 337

5 IONIC CHAIN POLYMERIZATION	340
5-1 Comparison of Radical and Ionic Polymerizations	340
5-2 Cationic Polymerization of the Carbon–Carbon Double Bond	342
5-2a <i>Initiation</i> , 342	
5-2a-1 <i>Protonic Acids</i> , 342	
5-2a-2 <i>Lewis Acids</i> , 343	
5-2a-3 <i>Other Initiators</i> , 346	
5-2b <i>Propagation</i> , 349	
5-2c <i>Termination</i> , 350	
5-2c-1 <i>Chain Transfer to Monomer</i> , 350	
5-2c-2 <i>Spontaneous Termination</i> , 351	
5-2c-3 <i>Combination with Counterion</i> , 352	
5-2c-4 <i>Backbiting</i> , 353	
5-2c-5 <i>Other Chain Transfer Reactions</i> , 353	
5-2c-6 <i>Retardation</i> , 354	
5-2d <i>Kinetics</i> , 355	
5-2d-1 <i>Different Kinetic Situations</i> , 355	
5-2d-2 <i>Validity of the Steady-State Assumption</i> , 358	
5-2d-3 <i>Molecular Weight Distribution</i> , 358	
5-2e <i>Absolute Rate Constants</i> , 358	
5-2e-1 <i>Experimental Methods</i> , 358	
5-2e-2 <i>Difficulty in Interpreting Rate Constants</i> , 360	

5-2e-3	<i>Comparison of Cationic and Radical Polymerization Rates</i> , 362	
5-2e-4	<i>C_M and C_S Values</i> , 363	
5-2f	<i>Effect of Reaction Medium</i> , 365	
5-2f-1	<i>Solvent Effects</i> , 365	
5-2f-2	<i>Effect of Gegenion</i> , 367	
5-2f-3	<i>Pseudocationic Polymerization</i> , 367	
5-2g	<i>Energetics</i> , 369	
5-2h	<i>Commercial Polymerization of Isobutene</i> , 371	
5-3	Anionic Polymerization of the Carbon–Carbon Double Bond	372
5-3a	<i>Initiation</i> , 373	
5-3a-1	<i>Nucleophilic Initiators</i> , 373	
5-3a-2	<i>Electron Transfer</i> , 374	
5-3b	<i>Termination</i> , 377	
5-3b-1	<i>Polymerizations Without Termination</i> , 377	
5-3b-2	<i>Termination by Impurities and Deliberately Added Transfer Agents</i> , 378	
5-3b-3	<i>Hydride Elimination</i> , 378	
5-3b-4	<i>Terminating Reactions of Polar Monomers</i> , 379	
5-3c	<i>Kinetics of Polymerization with Termination</i> , 380	
5-3d	<i>Kinetics of Living Polymerization</i> , 382	
5-3d-1	<i>Polymerization Rate</i> , 382	
5-3d-2	<i>Effects of Reaction Media</i> , 383	
5-3d-3	<i>Degree of Polymerization</i> , 388	
5-3d-4	<i>Energetics; Solvent-Separated and Contact Ion Pairs</i> , 389	
5-3d-5	<i>Association Phenomena in Alkyllithium</i> , 394	
5-3d-6	<i>Other Phenomena</i> , 397	
5-4	Block Copolymers	398
5-4a	<i>Sequential Monomer Addition</i> , 398	
5-4b	<i>Transformation Reactions</i> , 400	
5-4c	<i>Telechelic Polymers</i> , 400	
5-4d	<i>Coupling Reactions</i> , 401	
5-5	Distinguishing Between Radical, Cationic, and Anionic Polymerizations	401

5-6 Carbonyl Polymerization	402
<i>5-6a Anionic Polymerization, 403</i>	
<i>5-6a-1 Formaldehyde, 404</i>	
<i>5-6a-2 Other Carbonyl Monomers, 405</i>	
<i>5-6b Cationic Polymerization, 406</i>	
<i>5-6c Radical Polymerization, 407</i>	
<i>5-6d Step Polymerization, 407</i>	
<i>5-6e End-Capping, 408</i>	
5-7 Miscellaneous Polymerizations	409
<i>5-7a Monomers with Two Different Polymerizable Groups, 409</i>	
<i>5-7b Hydrogen-Transfer Polymerization, 410</i>	
<i>5-7c Polymerization and Cyclotrimerization of Isocyanates, 411</i>	
<i>5-7d Monomers with Triple Bonds, 412</i>	
6 CHAIN COPOLYMERIZATION	423
6-1 General Considerations	423
<i>6-1a Importance of Chain Copolymerization, 423</i>	
<i>6-1b Types of Copolymers, 424</i>	
6-2 Copolymer Composition	425
<i>6-2a Copolymerization Equation; Monomer Reactivity Ratios, 425</i>	
<i>6-2b Statistical Derivation of Copolymerization Equation, 428</i>	
<i>6-2c Range of Applicability of Copolymerization Equation, 430</i>	
<i>6-2d Types of Copolymerization Behavior, 431</i>	
<i>6-2d-1 Ideal Copolymerization, 431</i>	
<i>6-2d-2 Alternating Copolymerization, 433</i>	
<i>6-2d-3 Block Copolymerization, 435</i>	
<i>6-2e Variation of Copolymer Composition with Conversion, 435</i>	

6-2f	<i>Experimental Evaluation of Monomer Reactivity Ratios, 440</i>	
6-2g	<i>Microstructure of Copolymers, 441</i>	
6-2g-1	<i>Sequence-Length Distribution, 441</i>	
6-2g-2	<i>Copolymer Compositions of Different Molecules, 444</i>	
6-2h	<i>Multicomponent Copolymerization, 445</i>	
6-3	Radical Copolymerization	448
6-3a	<i>Effect of Reaction Conditions, 448</i>	
6-3a-1	<i>Reaction Medium, 448</i>	
6-3a-2	<i>Temperature, 449</i>	
6-3a-3	<i>Pressure, 450</i>	
6-3b	<i>Reactivity, 450</i>	
6-3b-1	<i>Resonance Effects, 455</i>	
6-3b-2	<i>Steric Effects, 458</i>	
6-3b-3	<i>Alternation; Polar Effects and Complex Participation, 460</i>	
6-3b-4	<i>Q-e Scheme, 463</i>	
6-3b-5	<i>Other Quantitative Approaches to Reactivity, 466</i>	
6-3c	<i>Rate of Copolymerization, 467</i>	
6-3c-1	<i>Chemical-Controlled Termination, 467</i>	
6-3c-2	<i>Diffusion-Controlled Termination, 470</i>	
6-4	Ionic Copolymerization	472
6-4a	<i>Cationic Copolymerization, 472</i>	
6-4a-1	<i>Monomer Reactivity, 472</i>	
6-4a-2	<i>Effect of Solvent and Gegenion, 474</i>	
6-4a-3	<i>Effect of Temperature, 476</i>	
6-4b	<i>Anionic Copolymerization, 476</i>	
6-4b-1	<i>Reactivity, 476</i>	
6-4b-2	<i>Effects of Solvent and Gegenion, 477</i>	
6-5	Deviations from Copolymer Composition Equation	478
6-5a	<i>Kinetic Penultimate Behavior, 478</i>	
6-5b	<i>Depropagation During Copolymerization, 481</i>	
6-5c	<i>Copolymerization with Complex Participation, 484</i>	

6-6 Copolymerizations of Dienes	485
6-6a <i>Crosslinking, 485</i>	
6-6b <i>Alternating Intra-Intermolecular Polymerization; Cyclopolymerization, 488</i>	
6-6c <i>Interpenetrating Polymer Networks, 492</i>	
6-7 Other Copolymerizations	492
6-7a <i>Miscellaneous Copolymerizations of Alkenes, 492</i>	
6-7b <i>Copolymerization of Carbonyl Monomers, 494</i>	
6-8 Applications of Copolymerization	494
6-8a <i>Styrene, 494</i>	
6-8b <i>Vinyl Chloride, 495</i>	
6-8c <i>Ethylene, 496</i>	
6-8d <i>Unsaturated Polyester, 497</i>	
7 RING-OPENING POLYMERIZATION	508
7-1 General Characteristics	509
7-1a <i>Scope; Polymerizability, 509</i>	
7-1b <i>Polymerization Mechanism and Kinetics, 510</i>	
7-2 Cyclic Ethers	511
7-2a <i>Anionic Polymerization of Epoxides, 512</i>	
7-2a-1 <i>Reaction Characteristics, 512</i>	
7-2a-2 <i>Exchange Reactions, 514</i>	
7-2a-3 <i>Chain Transfer to Monomer, 515</i>	
7-2b <i>Cationic Polymerization, 517</i>	
7-2b-1 <i>Initiation, 518</i>	
7-2b-2 <i>Termination, 521</i>	
7-2b-3 <i>Kinetics, 524</i>	
7-2b-4 <i>Cyclic Acetals, 528</i>	
7-2b-5 <i>Energetic Characteristics, 530</i>	
7-3 Cyclic Amides	534
7-3a <i>Hydrolytic Polymerization, 534</i>	

7-3b	<i>Anionic Polymerization, 536</i>	
7-3b-1	<i>Use of Strong Bases Alone, 536</i>	
7-3b-2	<i>Addition of N-Acyl lactam, 539</i>	
7-3c	<i>Cationic Polymerization, 541</i>	
7-3d	<i>Reactivity, 542</i>	
7-4	<i>N-Carboxy-α-Amino Acid Anhydrides</i>	543
7-5	<i>Other Cyclic Monomers</i>	545
7-5a	<i>Lactones, 545</i>	
7-5b	<i>Cyclic Amines, 546</i>	
7-5c	<i>Cyclic Sulfides, 547</i>	
7-5d	<i>Miscellaneous Polymerizations, 547</i>	
7-6	<i>Polymerization of Inorganic or Partially Inorganic Cyclic Monomers</i>	548
7-6a	<i>Cyclosiloxanes, 548</i>	
7-6b	<i>Sulfur, 550</i>	
7-6c	<i>Poly(organophosphazenes), 550</i>	
7-6d	<i>Polymeric Sulfur Nitride, 552</i>	
7-7	<i>Copolymerization</i>	552
7-7a	<i>Monomers Containing the Same Polymerizing Group, 553</i>	
7-7b	<i>Monomers Containing Different Functional Groups, 555</i>	
7-7c	<i>Zwitterion Copolymerization, 556</i>	
8	STEREOCHEMISTRY OF POLYMERIZATION	566
8-1	<i>Types of Stereoisomerism in Polymers</i>	567
8-1a	<i>Monosubstituted Ethylenes, 568</i>	
8-1a-1	<i>Site of Steric Isomerism, 568</i>	
8-1a-2	<i>Tacticity, 568</i>	
8-1b	<i>Disubstituted Ethylenes, 570</i>	
8-1b-1	<i>1,1-Disubstituted Ethylenes, 570</i>	
8-1b-2	<i>1,2-Disubstituted Ethylenes, 570</i>	

<i>8-1c Carbonyl and Ring-Opening Polymerizations</i> , 572	
<i>8-1d 1,3-Butadiene and 2-Substituted 1,3-Butadienes</i> , 574	
<i>8-1d-1 1,2- and 3,4-Polymerizations</i> , 574	
<i>8-1d-2 1,4-Polymerization</i> , 575	
<i>8-1e 4-Substituted and 1,4-Disubstituted 1,3-Butadienes</i> , 576	
<i>8-1e-1 1,2- and 3,4-Polymerizations</i> , 576	
<i>8-1e-2 1,4-Polymerization</i> , 577	
<i>8-1f Other Polymers</i> , 578	
8-2 Properties of Stereoregular Polymers	580
<i>8-2a Significance of Stereoregularity in Polymers</i> , 580	
<i>8-2a-1 Isotactic, Syndiotactic, and Atactic Polypropylenes</i> , 580	
<i>8-2a-2 cis- and trans- 1,4-Poly-1,3-Dienes</i> , 581	
<i>8-2a-3 Cellulose and Amylose</i> , 582	
<i>8-2b Analysis of Stereoregularity</i> , 583	
8-3 Forces of Stereoregulation in Alkene Polymerizations	584
<i>8-3a Radical Polymerization</i> , 585	
<i>8-3b Ionic and Coordination Polymerization</i> , 587	
<i>8-3b-1 Effect of Coordination</i> , 587	
<i>8-3b-2 Mechanism of Stereospecific Placement</i> , 589	
8-4 Ziegler-Natta Polymerization of Nonpolar Vinyl Monomers	591
<i>8-4a Mechanism of Ziegler-Natta Polymerization</i> , 592	
<i>8-4a-1 Chemical Nature of Propagating Species</i> , 593	
<i>8-4a-2 Primary versus Secondary Insertion</i> , 595	
<i>8-4a-3 Propagation of Carbon-Transition Metal Bond</i> , 595	
<i>8-4a-4 Bimetallic versus Monometallic Mechanisms</i> , 596	
<i>8-4a-5 Direction of Double Bond Opening</i> , 599	
<i>8-4a-6 Mechanism of Isotactic Control</i> , 601	
<i>8-4a-7 Mechanism of Syndiotactic Polymerization</i> , 605	
<i>8-4b Effect of Components of Ziegler-Natta Initiator System</i> , 608	
<i>8-4b-1 Transition Metal Component</i> , 608	
<i>8-4b-2 Group I-III Metal Component</i> , 609	
<i>8-4b-3 Third Component</i> , 610	
<i>8-4c Kinetics</i> , 611	

8-4c-1	<i>Observed Rate Behavior</i> , 611
8-4c-2	<i>Termination</i> , 612
8-4c-3	<i>Rate Expression</i> , 613
8-4c-4	<i>Values of Kinetic Parameters</i> , 615
8-4d	<i>Scope of the Ziegler-Natta Initiator</i> , 616
8-4d-1	<i>Cycloalkenes</i> , 617
8-4d-2	<i>Alkynes</i> , 618
8-4d-3	<i>Copolymerization</i> , 618
8-4e	<i>Commercial Polymerizations</i> , 619
8-4e-1	<i>Supported Initiators</i> , 619
8-4e-2	<i>Process Conditions</i> , 621
8-5	Stereospecific Polymerization of Polar Vinyl Monomers 623
8-5a	<i>Methyl Methacrylate</i> , 623
8-5b	<i>Vinyl Ethers</i> , 625
8-5c	<i>Styrene</i> , 626
8-6	Stereospecific Polymerization of 1,3-Dienes 626
8-6a	<i>Radical Polymerization</i> , 626
8-6b	<i>Anionic and Coordination Polymerizations</i> , 628
8-6c	<i>Cationic Polymerization</i> , 633
8-6d	<i>Other Polymerizations</i> , 634
8-7	Carbonyl Monomers 634
8-8	Other Stereochemical Aspects of Polymerization 634
8-8a	<i>Optical Activity in Polymers</i> , 634
8-8b	<i>Stereoselection and Stereoelection</i> , 635
8-8c	<i>Ring-Opening Polymerization</i> , 637
8-8d	<i>Step Polymerization</i> , 638
8-9	Statistical Models of Propagation 639
8-9a	<i>Bernoulli Model</i> , 639
8-9b	<i>First-Order Markov Model</i> , 640
8-9c	<i>Application of Propagation Statistics</i> , 641

Contents	xxv
9 REACTIONS OF POLYMERS	654
9-1 Principles of Polymer Reactivity	654
9-1a <i>Yield, 654</i>	
9-1b <i>Isolation of Functional Groups, 655</i>	
9-1c <i>Concentration, 655</i>	
9-1d <i>Crystallinity, 656</i>	
9-1e <i>Change in Solubility, 656</i>	
9-1f <i>Crosslinking, 657</i>	
9-1g <i>Steric Effects, 658</i>	
9-1h <i>Electrostatic Effects, 659</i>	
9-1i <i>Neighboring Group Effects, 660</i>	
9-1j <i>Hydrophobic Interactions, 661</i>	
9-1k <i>Other Considerations, 662</i>	
9-2 Crosslinking	663
9-2a <i>Alkyds, 663</i>	
9-2b <i>Elastomers Based on 1,3-Dienes, 665</i>	
9-2b-1 <i>Sulfur Alone, 665</i>	
9-2b-2 <i>Accelerated Sulfur Vulcanization, 666</i>	
9-2b-3 <i>Other Vulcanizations, 668</i>	
9-2b-4 <i>Commercial Elastomers, 669</i>	
9-2c <i>Peroxide Crosslinking, 669</i>	
9-2d <i>Other Crosslinking Processes, 671</i>	
9-3 Reactions of Cellulose	672
9-3a <i>Dissolution of Cellulose, 672</i>	
9-3b <i>Esterification, 674</i>	
9-3c <i>Etherification, 674</i>	
9-4 Reactions of Poly(vinyl acetate)	674
9-5 Halogenation	675
9-5a <i>Natural Rubber, 675</i>	

9-5b <i>Saturated Hydrocarbon Polymers</i> , 676	
9-6 Aromatic Substitution	677
9-7 Cyclization	678
9-8 Graft Copolymers	679
9-8a <i>Radical Graft Polymerization</i> , 679	
9-8a-1 <i>Chain Transfer and Copolymerization</i> , 679	
9-8a-2 <i>Ionizing Radiation</i> , 680	
9-8a-3 <i>Ultraviolet Radiation</i> , 682	
9-8a-4 <i>Redox Initiation</i> , 682	
9-8a-5 <i>Other Grafting Systems</i> , 682	
9-8b <i>Ionic Graft Polymerization</i> , 683	
9-8b-1 <i>Anionic Initiation</i> , 683	
9-8b-2 <i>Cationic Initiation</i> , 684	
9-9 Block Copolymers	684
9-9a <i>Mechanochemical Bond Scission</i> , 684	
9-9b <i>Special Initiators</i> , 685	
9-9c <i>Other Methods</i> , 686	
9-10 Polymers as Carriers or Supports	687
9-10a <i>Synthesis</i> , 687	
9-10a-1 <i>Attachment of Group to Polymer</i> , 687	
9-10a-2 <i>Polymerization of a Functional Monomer</i> , 689	
9-10a-3 <i>Comparison of the Two Synthetic Approaches</i> , 689	
9-10b <i>Advantages of Polymer Reagents, Catalysts, and Substrates</i> , 690	
9-11 Polymer Reagents	691
9-12 Polymer Catalysts	694
9-13 Polymer Substrates	698
9-13a <i>Solid-Phase Synthesis of Peptides</i> , 698	
9-13b <i>Other Applications</i> , 702	
INDEX	715