

Contents

<i>Preface</i>	<i>iii</i>
<i>Contributors</i>	<i>ix</i>
1. FOAMINESS AND CAPILLARITY IN APOLAR SOLUTIONS	1
<i>Sydney Ross</i>	
I. Theories of Foam Stability	1
II. Relation of Capillarity to Phase Diagrams	8
III. Three Regimes of Concentration of Surface-Active Solutes	18
References	38
2. AQUEOUS NANOPHASES IN LIQUID HYDROCARBONS STABILIZED BY IONIC SURFACTANTS	41
<i>Hans-Friedrich Eicke</i>	
I. Introduction	41
II. Three-Component Microemulsions	44
III. Multi(>3)-component Microemulsions with Ionic Surfactants	84
References	88
3. STABILIZATION OF INVERSE MICELLES BY NONIONIC SURFACTANTS	93
<i>Stig E. Friberg</i>	
I. Introduction	93
II. Temperature Dependence of Isotropic Solution Regions	94

III.	Inverse Micellar Region	102
IV.	Summary	114
	References	114
4.	ENHANCED OIL RECOVERY WITH MICROEMULSIONS	117
	<i>C. A. Miller and S. Qutubuddin</i>	
I.	General Background	118
II.	Mechanism of Oil Trapping	119
III.	Frontal Instabilities	124
IV.	Chemical Flooding Processes	125
V.	Phase Behavior of Surfactant-Oil-Brine Systems	128
VI.	Maintaining Ultralow Interfacial Tensions During Surfactant Flooding	157
VII.	Mobility Considerations	163
VIII.	Nonequilibrium Phenomena	164
IX.	Adsorption and Precipitation	166
X.	Process Modeling	172
XI.	Application of Chemical Flooding References	174
		175
5.	INTERFACIAL CATALYSIS BY MICROPHASES IN APOLAR MEDIA	187
	<i>Charmian J. O'Connor</i>	
I.	Introduction	188
II.	Saturation Effects in Micellar Catalysis	192
III.	Mass Action or Multiple-equilibrium Model	208
IV.	Distribution Model for Bimolecular Reactions	217
V.	Role of Cosolubilized Water	223
VI.	Hydrophobic Environment	235
VII.	Micellar Enzymology	236
VIII.	Concluding Remarks References	244
		248
6.	WATER-IN-OIL EMULSIONS	257
	<i>Paul Becher</i>	
I.	Introduction	257
II.	Stability of Water-in-Oil Emulsions	258
III.	Properties of Water-in-Oil Emulsions	277
IV.	Applications References	278

7. ADSORPTION OF POLYMERS ON SOLIDS FROM APOLAR MEDIA	281
<i>Gordon J. Howard</i>	
I. Introduction	281
II. Experimental Methods	282
III. Theoretical Aspects	286
IV. Experimental Results	290
V. Conclusions	316
References	317
8. LUBRICATION	327
<i>B. Briscoe and D. Tabor</i>	
I. Introduction	327
II. Simple Models of Lubrication	327
III. Regimes of Lubrication	328
IV. Rheology of Interfacial Films	342
V. Some Implications of Thin-film Shear	345
VI. Lubrication Failure	347
VII. Conclusions	355
References	356
9. PIGMENT DISPERSION IN APOLAR MEDIA	361
<i>R. B. McKay</i>	
I. Introduction	361
II. Physical Character of Copper Phthalocyanine and Titanium Dioxide Pigment Crystals	364
III. Aggregation of Copper Phthalocyanine Pigment Crystals	367
IV. Wetting and Aging	370
V. Desorption/Dissolution of Additives from Organic Pigments	373
VI. Adsorption of Binder Resins	376
VII. Weak Flocculation	381
VIII. Control of Flocculation	391
References	402
Index	405