

CONTENTS

INTRODUCTION

PART ONE

PREPARATION, CRYSTAL GROWTH AND THIN FILM DEPOSITION OF OXIDE MATERIALS	1
CHAPTER 1. The Preparation of Oxide Materials	3
1.1. Methods of Preparing Oxides	3
1.2. Purification of Oxide Materials	5
1.3. Analysis of Oxide Materials	9
CHAPTER 2. The Preparation of Single Crystals of Pure and Doped Oxides	12
2.1. General	12
2.2. The Preparation of Single Crystals from Molten Oxide Materials	13
2.2.1. The Verneuil Method	14
2.2.2. The Method of Crystal Pulling	18
2.2.3. The Floating Zone Method	20
2.2.4. Some Problems Involved in Crystal Growth and the Doping of Oxide Materials	23
2.3. The Preparation of Single Oxide Crystals from Solutions	25
2.3.1. The Hydrothermal Method	25
2.3.2. The Molten Salt Method of Crystal Growth	27
2.4. The Growth of Single Oxide Crystals from the Gas Phase	30
CHAPTER 3. Preparation of Thin Oxide Films	34
3.1. Reactive Sputtering	34
3.1.1. Reactive Sputtering in the Two-electrode System	34
3.1.2. Bias Sputtering	37
3.1.3. R.F. Sputtering	40
3.2. The Preparation of Thin Oxide Films by Vacuum Evaporation	42
3.3. Anodic Oxidation	44
3.4. Plasma Anodization	46
3.5. Deposition of Oxide Films by Gas Phase Reactions	48
3.6. Epitaxial Growth of Thin Films	51
PART TWO	
CRYSTAL STRUCTURE AND IMPERFECTIONS OF OXIDE MATERIALS	53
CHAPTER 4. Structure and Defects of Oxide Crystals	55
4.1. Crystal Structure of Oxides	55

4.2. Types of Defects in Oxide Crystals	58
4.3. Dislocations and Grain Boundaries	59
CHAPTER 5. Foundations of the Theory of Point Defects in Oxide Crystals	66
5.1. Historical Outline	66
5.2. Types of Electrically Neutral Atomic Defects in Oxide Crystals and Quasi-chemical Reactions of Defects	68
5.3. Factors Determining the Equilibrium Concentration of Defects	71
5.4. Chemical Potential of Neutral Atomic Defects. Law of Mass Action	74
5.5. Structure of Electronic Defects	80
5.5.1. Electronic Defects in Crystals not Containing Atomic Defects	80
5.5.2. Electronic Defects in Crystals with Atomic Disorder	87
CHAPTER 6. Defect Equilibria in Pure Crystals	94
6.1. Equilibrium between a Crystal and Surrounding Gas Phase	94
6.2. Equilibria of Fully Ionized Vacancies, Electrons and Holes	98
6.3. Equilibria of Neutral and Ionized Vacancies, and Electrons and Holes	101
6.4. Equilibria of Vacancies, Interstitial Atoms, and Electrons and Holes	105
6.5. The Temperature Dependence of Concentration of Point Defects	109
6.6. Other Types of Defects	111
6.7. Deviations from Stoichiometry	113
CHAPTER 7. Defect Equilibria in Crystals Containing Admixtures	117
7.1. Mechanism of Incorporation of Foreign Atoms into the Crystal Lattice	117
7.2. Interrelations between Concentrations of Native Defects and of Foreign Atoms	118
7.3. Other Types of Defect Situation in Crystals Containing Admixtures	125
7.4. Solubility of Foreign Atoms in Crystals	127
CHAPTER 8. Concentration of Defects at Low and Intermediate Temperatures	130
PART THREE	
DEFECT STRUCTURE, ELECTRICAL AND ATOMIC TRANSPORT PHENOMENA IN SELECTED OXIDES	137
CHAPTER 9. Electronic and Atomic Transport Phenomena — Fundamentals	139
9.1. Electronic Transport Phenomena	139
9.2. Self-diffusion and Chemical Diffusion Coefficients	144
CHAPTER 10. Nickel Oxide, NiO	150
10.1. Electronic Transport in Nickel Oxide at Low and Intermediate Temperatures	150
10.2. Defect Structure and Electronic Transport in NiO at High Temperatures	164
10.3. Self-diffusion and Chemical Diffusion in NiO	178
10.4. Physico-chemical Properties of Nickel Oxide	181
10.5. Thin Films of NiO	188
CHAPTER 11. Oxides of Cobalt, Iron and Manganese	190
11.1. Cobaltous Oxide, CoO	190
11.2. Wüstite, FeO	207
11.3. Manganese Oxide, MnO	210
CHAPTER 12. Rutile, TiO₂	212
12.1. Electronic Transport Phenomena in TiO ₂ at Low and Intermediate Temperatures	212
12.2. Defect Structure and Transport Phenomena in TiO ₂ at High Temperatures	219
12.3. Thin Films of TiO ₂	224

CHAPTER 13. Oxides of Copper, Zinc and Cadmium	226
13.1. Cuprite, Cu ₂ O	226
13.2. Zinc Oxide, ZnO	228
13.2.1. Electrical Properties of ZnO at Low and Intermediate Temperatures	228
13.2.2. Defect Structure and Electrical Properties of ZnO at High Temperatures	235
13.2.3. Thin Films of ZnO	238
13.3. Cadmium Oxide, CdO	239
CHAPTER 14. Aluminium Oxide, Al₂O₃	243
CHAPTER 15. Oxides of Tin and Silicon	252
15.1. Cassiterite, SnO ₂	252
15.2. Silicon Oxides	256
REFERENCES	267
AUTHOR INDEX	279
SUBJECT INDEX	283