

CONTENTS

FOUNDATIONS OF DIFFUSION CONTROLLED REACTION KINETICS

1.1.	Basic Principles of the Kinetics of Diffusion Controlled Reactions	1
1.2.	The Smoluchowski Method	4
1.3.	The Problem of Boundary Conditions	9
1.4.	The Method of Conjugated Equations	13
1.5.	Diffusion Controlled Reaction of Anisotropic Molecules	19
1.6.	Effect of Transfer Processes on the Kinetics of Multistaged Chemical Transformations	22
1.7.	Three-Molecular Reactions	25
1.8.	Substantiation of Diffusion Approximation	28
1.9.	Diffusion Motion of Quantum Particles in a Medium	41

DIFFUSION CONTROLLED PROCESSES WITH INTERMOLECULAR INTERACTION

2.1.	Treatment of Intermolecular Interaction in the Smoluchowski Method	55
2.2.	Kinetics of Luminescence Quenching	79
2.3.	Tunnel Charge Transfer in Recombination Reactions	87
2.4.	Model Potentials in the Interacting Particle Kinetics	90

METHODS OF MANY-PARTICLE DESCRIPTION IN THE KINETICS OF DIFFUSION CONTROLLED PROCESSES

3.1.	Many-Particle Distribution Functions	95
3.2.	Method of Intervals	98
3.3.	The Method of Cells	118
3.4.	The Effective Medium Method	125
3.5.	The Method of Green's Functions	128
3.6.	Consideration of Fluctuations of Reagent Densities	138
3.7.	Theoretical-Field Description of the Diffusion Kinetics of Reacting Particles	151

BOUNDARY CONDITIONS IN DIFFUSION CONTROLLED REACTION KINETICS

4.1.	Description of Diffusion Controlled Reactions Within the Framework of Formal Kinetics	165
4.2.	Model Representations of DCR Potential Surfaces	170
4.3.	General Form of Boundary Conditions	176
4.4.	Smoluchowski Problem with a General-Type Boundary Condition	182
4.5.	Boundary Conditions for Mass Transfer Through the Interface	184

MEMBRANE SEPARATION PROCESSES FOR LIQUID AND GAS MEDIA

5.1.	Transfer in Ion-Exchange Membranes	188
5.2.	Water and Ion Transfer in Reverse Osmotic Membranes	207
5.3.	Membrane Gas Separation	213

SUBJECT INDEX

234