

CONTENTS

Preface

xv

1 Characteristic Features of Surfactants	1
I. Conditions under which Interfacial Phenomena and Surfactants Become Significant	2
II. General Structural Features and Behavior of Surfactants	2
A. General Use of Charge Types	4
B. General Effects of the Nature of the Hydrophobic Group	5
1. Length of the Hydrophobic Group	5
2. Branching, Unsaturation	5
3. Aromatic Nucleus	5
4. Polyoxypropylene or Polyoxyethylene (POE) Units	5
5. Perfluoroalkyl or Polysiloxane Group	6
III. Environmental Effects of Surfactants	6
A. Surfactant Biodegradability	6
B. Surfactant Toxicity; Skin Irritation	7
IV. Characteristic Features and Uses of Commercially Available Surfactants	8
A. Anionics	9
1. Carboxylic Acid Salts	9
2. Sulfonic Acid Salts	11
3. Sulfuric Acid Ester Salts	15
4. Phosphoric and Polyphosphoric Acid Esters	17
5. Fluorinated Anionics	18
B. Cationics	19
1. Long-Chain Amines and Their Salts	20
2. Acylated Diamines and Polyamines and Their Salts	20
3. Quaternary Ammonium Salts	20
4. Polyoxyethylenated Long-Chain Amines	22
5. Quaternized POE Long-Chain Amines	22
6. Amine Oxides	22

C. Nonionics	23
1. Polyoxyethylenated Alkylphenols, Alkylphenol "Ethoxylates"	23
2. Polyoxyethylenated Straight-Chain Alcohols	24
3. Polyoxyethylenated Polyoxypropylene Glycols	25
4. Polyoxyethylenated Mercaptans	25
5. Long-Chain Carboxylic Acid Esters	26
6. Alkanolamine "Condensates," Alkanolamides	27
7. Tertiary Acetylenic Glycols and Their "Ethoxylates"	28
8. Polyoxyethylenated Silicones	28
9. N-Alkylpyrrolid(in)ones	29
10. Alkylpolyglycosides	29
D. Zwitterionics	30
1. pH-Sensitive Zwitterionics	30
2. pH-Insensitive Zwitterionics	32
E. Newer Surfactants Based Upon Renewable Raw Materials	32
1. α -Sulfofatty Acid Methyl Esters (SME)	32
2. Acylated Aminoacids	33
3. Nopol Alkoxylates	34
V. Some Useful Generalizations	34
VI. Electronic Searching of the Surfactant Literature	35
References	36
Problems	37
2 Adsorption of Surface-Active Agents at Interfaces: The Electrical Double Layer	39
I. The Electrical Double Layer	40
II. Adsorption at the Solid-Liquid Interface	44
A. Mechanisms of Adsorption and Aggregation	44
B. Adsorption Isotherms	48
1. The Langmuir Adsorption Isotherm	50
C. Adsorption from Aqueous Solution onto Adsorbents with Strongly Charged Sites	53
1. Ionic Surfactants	53
2. Nonionic Surfactants	59
3. pH Change	59
4. Ionic Strength	60
5. Temperature	60

D. Adsorption from Aqueous Solution onto Nonpolar, Hydrophobic Adsorbents	60
E. Adsorption from Aqueous Solution onto Polar Adsorbents without Strongly Charged Sites	63
F. Effects of Adsorption from Aqueous Solution on the Surface Properties of the Solid Adsorbent	63
1. Substrates with Strongly Charged Sites	63
2. Nonpolar Adsorbents	65
G. Adsorption from Nonaqueous Solution	65
H. Determination of the Specific Surface Areas of Solids	66
III. Adsorption at the Liquid–Gas (L/G) and Liquid–Liquid (L/L) Interfaces	66
A. The Gibbs Adsorption Equation	67
B. Calculation of Surface Concentrations and Area Per Molecule at the Interface by Use of the Gibbs Equation	69
C. Effectiveness of Adsorption at the L/G and L/L Interfaces	71
D. The Szyszkowski, Langmuir, and Frumkin Equations	99
E. Efficiency of Adsorption at the L/G and L/L Interfaces	100
F. Calculation of Thermodynamic Parameters of Adsorption at the L/G and L/L Interfaces	104
G. Adsorption from Mixtures of Two Surfactants	113
References	115
Problems	121

3 Micelle Formation by Surfactants 123

I. The Critical Micelle Concentration (CMC)	123
II. Micellar Structure and Shape	126
A. The Packing Parameter	126
B. Surfactant Structure and Micellar Shape	127
C. Liquid Crystals	128
D. Rheology of Surfactant Solutions	131
III. Micellar Aggregation Numbers	132
IV. Factors Affecting the Value of the CMC in Aqueous Media	140
A. Structure of the Surfactant	140
1. The Hydrophobic Group	140
2. The Hydrophilic Group	158
3. The Counterion in Ionic Surfactants; Degree of Binding to the Micelle	160
4. Empirical Equations	164

B. Electrolyte	166
C. Organic Additives	167
1. Class I Materials	167
2. Class II Materials	168
D. The Presence of a Second Liquid Phase	169
E. Temperature	170
V. Micellization in Aqueous Solution and Adsorption at the Aqueous Solution–Air or Aqueous Solution–Hydrocarbon Interface	170
A. The CMC/ C_{20} Ratio	171
VI. CMCs in Nonaqueous Media	179
VII. Equations for the CMC Based on Theoretical Considerations	180
VIII. Thermodynamic Parameters of Micellization	184
IX. Mixed Micelle Formation in Mixtures of Two Surfactants	191
References	192
Problems	200

4 Solubilization by Solutions of Surfactants: Micellar Catalysis	202
I. Solubilization in Aqueous Media	203
A. Locus of Solubilization	203
B. Factors Determining the Extent of Solubilization	206
1. Structure of the Surfactant	207
2. Structure of the Solubilizate	209
3. Effect of Electrolyte	209
4. Effect of Monomeric Organic Additives	210
5. Effect of Polymeric Organic Additives	211
6. Mixed Anionic–Nonionic Micelles	212
7. Effect of Temperature	212
8. Hydrotropy	214
C. Rate of Solubilization	214
II. Solubilization in Nonaqueous Solvents	215
A. Secondary Solubilization	218
III. Some Effects of Solubilization	218
A. Effect of Solubilization on Micellar Structure	218
B. Change in the CPs of Aqueous Solutions of Nonionic Surfactants	219

C. Reduction of the CMC	223
D. Miscellaneous Effects of Solubilization	223
IV. Micellar Catalysis	224
References	229
Problems	233
5 Reduction of Surface and Interfacial Tension by Surfactants	235
I. Efficiency in Surface Tension Reduction	239
II. Effectiveness in Surface Tension Reduction	241
A. The Krafft Point	241
B. Interfacial Parameter and Chemical Structural Effects	242
III. Liquid–Liquid Interfacial Tension Reduction	256
A. Ultralow Interfacial Tension	257
IV. Dynamic Surface Tension Reduction	262
A. Dynamic Regions	262
B. Apparent Diffusion Coefficients of Surfactants	265
References	266
Problems	270
6 Wetting and Its Modification by Surfactants	272
I. Wetting Equilibria	272
A. Spreading Wetting	273
1. The Contact Angle	275
2. Measurement of the Contact Angle	277
B. Adhesional Wetting	278
C. Immersional Wetting	281
D. Adsorption and Wetting	282
II. Modification of Wetting by Surfactants	285
A. General Considerations	285
B. Hard Surface (Equilibrium) Wetting	286
C. Textile (Nonequilibrium) Wetting	288
D. Effect of Additives	299
III. Synergy in Wetting by Mixtures of Surfactants	300
IV. Superspreading (Superwetting)	300
References	303
Problems	306

7 Foaming and Antifoaming by Aqueous Solutions of Surfactants	308
I. Theories of Film Elasticity	309
II. Factors Determining Foam Persistence	313
A. Drainage of Liquid in the Lamellae	313
B. Diffusion of Gas through the Lamellae	314
C. Surface Viscosity	315
D. The Existence and Thickness of the Electrical Double Layer	315
III. The Relation of Surfactant Chemical Structure to Foaming in Aqueous Solution	316
A. Efficiency as a Foaming Agent	317
B. Effectiveness as a Foaming Agent	317
C. Low-Foaming Surfactants	325
IV. Foam-Stabilizing Organic Additives	326
V. Antifoaming	329
VI. Foaming of Aqueous Dispersions of Finely Divided Solids	330
VII. Foaming and Antifoaming in Organic Media	331
References	332
Problems	334
8 Emulsification by Surfactants	336
I. Macroemulsions	337
A. Formation	338
B. Factors Determining Stability	338
1. Physical Nature of the Interfacial Film	339
2. Existence of an Electrical or Steric Barrier to Coalescence on the Dispersed Droplets	341
3. Viscosity of the Continuous Phase	342
4. Size Distribution of Droplets	342
5. Phase Volume Ratio	343
6. Temperature	343
C. Inversion	345
D. Multiple Emulsions	345
E. Theories of Emulsion Type	347
1. Qualitative Theories	347
2. Kinetic Theory of Macroemulsion Type	349
II. Microemulsions	350
III. Nanoemulsions	354

IV.	Selection of Surfactants as Emulsifying Agents	355
A.	The Hydrophile–Lipophile Balance (HLB) Method	356
B.	The PIT Method	358
C.	The Hydrophilic Lipophilic Deviation (HLD) Method	361
V.	Demulsification	361
	References	363
	Problems	366
9	Dispersion and Aggregation of Solids in Liquid Media by Surfactants	368
I.	Interparticle Forces	368
A.	Soft (Electrostatic) and van der Waals Forces: Derjaguin and Landau and Verwey and Overbeek (DLVO) Theory	369
1.	Limitations of the DLVO Theory	374
B.	Steric Forces	376
II.	Role of the Surfactant in the Dispersion Process	378
A.	Wetting of the Powder	378
B.	Deaggregation of Fragmentation of Particle Clusters	379
C.	Prevention of Reaggregation	379
III.	Coagulation or Flocculation of Dispersed Solids by Surfactants	379
A.	Neutralization or Reduction of the Potential at the Stern Layer of the Dispersed Particles	380
B.	Bridging	381
C.	Reversible Flocculation	381
IV.	The Relation of Surfactant Chemical Structure to Dispersing Properties	382
A.	Aqueous Dispersions	382
B.	Nonaqueous Dispersions	387
C.	Design of New Dispersants	387
	References	388
	Problems	390
10	Detergency and Its Modification by Surfactants	392
I.	Mechanisms of the Cleaning Process	392
A.	Removal of Soil from Substrate	393
1.	Removal of Liquid Soil	394
2.	Removal of Solid Soil	395

B. Suspension of the Soil in the Bath and Prevention of Redeposition	398
1. Solid Particulate Soil: Formation of Electrical and Steric Barriers; Soil Release Agents	398
2. Liquid Oily Soil	399
C. Skin Irritation (see Chapter 1, Section IIIB)	400
D. Dry Cleaning	401
II. Effect of Water Hardness	402
A. Builders	402
B. LSDAs	404
III. Fabric Softeners	405
IV. The Relation of the Chemical Structure of the Surfactant to its Detergency	407
A. Effect of Soil and Substrate	407
1. Oily Soil	407
2. Particulate Soil	409
3. Mixed Soil	410
B. Effect of the Hydrophobic Group of the Surfactant	411
C. Effect of the Hydrophilic Group of the Surfactant	412
D. Dry Cleaning	414
V. Biosurfactants and Enzymes in Detergent Formulations	415
VI. Nanodetergents (see Chapter 14, Section IIIF)	416
References	416
Problems	419

11 Molecular Interactions and Synergism in Mixtures of Two Surfactants

421

I. Evaluation of Molecular Interaction Parameters	422
A. Notes on the Use of Equations 11.1–11.4	423
II. Effect of Chemical Structure and Molecular Environment on Molecular Interaction Parameters	427
III. Conditions for the Existence of Synergism	440
A. Synergism or Antagonism (Negative Synergism) in Surface or Interfacial Tension Reduction Efficiency	441
B. Synergism or Antagonism (Negative Synergism) in Mixed Micelle Formation in an Aqueous Medium	442
C. Synergism or Antagonism (Negative Synergism) in Surface or Interfacial Tension Reduction Effectiveness	445
D. Selection of Surfactant Pairs for Optimal Interfacial Properties	447

IV.	The Relation between Synergism in Fundamental Surface Properties and Synergism in Surfactant Applications	448
References	453	
Problems	456	
12	Gemini Surfactants	458
I.	Fundamental Properties	459
II.	Interaction with Other Surfactants	463
III.	Performance Properties	466
References	467	
Problems	470	
13	Surfactants in Biology	471
I.	Biosurfactants and Their Application Areas	471
II.	Cell Membranes	480
III.	Surfactants in Cell Lysis	486
IV.	Protein Denaturing and Electrophoresis with Surfactants	491
V.	Pulmonary Surfactants	491
VI.	Surfactants in Biotechnology	493
A.	Mineral Engineering	494
B.	Fermentation	495
C.	Enzymatic Deinking	495
D.	EOR and Oil Bioremediation	495
E.	Enzyme Activity in Surfactant Media	496
F.	Carbon Dioxide “Fixing” in Bioreactors	496
G.	Soil Remediation	496
H.	Effluent Purification	497
I.	Surfactants in Horticulture	497
J.	Vesicle Manipulation	497
K.	Genetic Engineering and Gene Therapy	497
References	498	
Problems	501	
14	Surfactants in Nanotechnology	502
I.	Special Effects of the Nanostate	503
II.	Role of Surfactants in the Preparation of Nanostructures	503
A.	Bottom-Up Methods	504
1.	Surfactant Self-Assembly	504
2.	Synthetic Processes	508
B.	Top-Down Methods	517

III.	Surfactants in Nanotechnology Applications	517
A.	Nanomotors	517
B.	Other Nanodevices	520
C.	Drug Delivery	522
D.	Nanostructural Architectural Control of Materials	522
E.	Nanotubes	525
F.	Nanodetergents	525
G.	Surfactant Nanoassemblies in the Origin of Life	526
	References	528
	Problems	529
15	Surfactants and Molecular Modeling	531
I.	Molecular Mechanics Methods	533
A.	Parametrization from Experiments	534
B.	Classes of FF Methods	534
II.	Quantum Mechanical Methods	534
A.	Application to the Electronic Problem	536
B.	The Hartree Product (HP) Description	537
C.	Minimal and Larger Basis Sets	538
D.	Electron Correlation Method	539
E.	Density Functional Theory (DFT)	540
III.	Energy Minimization Procedure	540
IV.	Computer Simulation Methods	541
V.	Surfactant Systems	542
VI.	Five Selected Systems	542
A.	Aggregation in a Liquid (i)	542
B.	Aggregation in a Liquid (ii)	543
C.	Liquid–liquid and Liquid–Gas Interface	545
D.	Solid–Liquid Interface	547
E.	Solid–Liquid Interface and Aggregation in a Liquid	549
VII.	Summary of Representative Modeling Studies	550
	General References	568
	Problems	568
	Answers to Selected Problems	569
	Index	576