

Contents

Preface	v
CHAPTER 1	
ORDER IN LANGMUIR MONOLAYERS AND IN THE AQUEOUS SUBPHASE	1
Pulak Dutta	
1. Introduction	1
2. The phase diagram of fatty acid and alcohol Langmuir monolayers	2
3. Backbone ordering in fatty acid monolayers	5
4. Order in the aqueous subphase	6
5. Ongoing and future studies	10
6. Acknowledgement	11
7. References	11
CHAPTER 2	
ANALYTIC MODEL OF FLOW ORIENTATION IN LANGMUIR-BLODGETT FILMS	13
Michio Sugi, Yuka Tabe and Keiichi Ikegami	
1. Introduction	13
2. In-plane Anisotropy in LB Films	17
2.1. Optical Anisotropy of J-Aggregate	17
2.2. Anisotropy in ESR Line Shape	19
2.3. Possible Origin of In-plane Anisotropy	21
3. Basic Framework of the Model	24
3.1. Velocity Potential of the Monolayer Flow	24
3.2. Rotatory Motion of Particles	28
3.3. Dichroic Ratio	33
3.4. Bingham Model of Plasticity	34

3.5.	Predictions from the Model	35
3.6.	Comparison with Experimental Results	37
4.	Application to Complicated Cases	43
4.1.	Batch Production of LB Films	44
4.2.	Deposition in Small Troughs	51
4.3.	Anomalous Deposition Processes	59
5.	Numerical Calculation Based on a More Precise Model	65
5.1.	Flow Orientation Effect as a Markov Process	66
5.2.	Comparison with Experimental Results	70
5.3.	General Remarks	75
6.	Flow Orientation with Rotating Disks	77
6.1.	Rotating-disk Method	77
6.2.	Monolayer Flow Generated by a Rotatory Disk	79
6.3.	Orientation due to Shearing	85
6.4.	Multi-disk Versions	91
7.	Concluding Remarks	95
8.	Acknowledgements	98
9.	Bibliography	98

CHAPTER 3

EQUILIBRIUM AND DYNAMICS OF 2D AGGREGATING MIXED MONOLAYERS CONSISTING OF SOLUBLE AND INSOLUBLE AMPHIPHILES	105
--	------------

Valentin B. Fainerman and Dieter Vollhardt

1.	Introduction	105
2.	General principles of penetration thermodynamics	107
3.	Description of the Gibbs monolayers with 2D aggregation	113
4.	Equation of state for Langmuir monolayers with 2D aggregation	115
5.	Penetration thermodynamics for homologues	118

5.1	Generalised Szyszkowski-Langmuir equation	119
5.2.	Generalised Volmer equation	122
5.3.	Influence of the soluble amphiphile adsorption on the aggregation conditions	125
6.	Penetration dynamics	127
7.	Adsorption of soluble component in the compressed mixed monolayer	129
8.	Experimental technique	133
9.	Experimental studies of penetration and 2D aggregation	136
9.1.	Mixed monolayer of soluble and insoluble dimethyl phosphine oxides	136
9.2.	Mixed monolayer of soluble and insoluble amino acids	139
9.3.	Protein penetration into DPPC phospholipid monolayers	144
9.4.	Coadsorption of SDS/dodecanol mixtures	151
10.	Conclusions	155
11.	References	157

CHAPTER 4
ORGANISATION OF PORPHYRINS IN MONOLAYERS AND MONOLAYER ASSEMBLIES 161

Maria Teresa Martín Romero and Dietmar Möbius

1.	Introduction	161
2.	Monolayers at the Gas-Water Interface	162
2.1	Location and orientation in monolayers at the gas-water interface	163
2.2	Association phenomena	172
2.3	Protonation and metallation equilibria	185
3.	Monolayer Assemblies	190
3.1	Porphyrin organisation in monolayer assemblies	190
3.2	Porphyrins as components of supermolecules	196
3.3	Potential applications	199
4.	Abbreviations	200

5.	List of Symbols	201
6.	References	202

CHAPTER 5
ENZYMATIC REACTIONS AT INTERFACES 207

Marie Hélène Ropert, Gerald Brezesinski and Helmuth Möhwald

1.	Introduction	207
2.	Methods	208
3.	Results and Discussion	212
3.1.	Polymorphism of phospholipid monolayers	212
3.2.	Interfacial reactions	216
3.2.1.	The binding step	216
3.2.2.	The catalyzed reactions	223
3.2.3.	Inhibition – Activation	234
4.	Concluding remarks	238
5.	Abbreviations	239
6.	References	240

CHAPTER 6
ELECTRON SPIN RESONANCE SPECTROSCOPY OF LANGMUIR-BLODGETT FILMS CONTAINING FUNCTIONAL MOLECULES 247

Shin-ichi Kuroda

1.	Introduction	247
2.	Parameters determined by ESR spectroscopy	248
3.	Examples of ESR analysis of LB films	250
3.1.	Characterization of in-plane molecular orientation in merocyanine dye LB films	250
3.1.1.	Anisotropic ESR spectra of stable radicals - Characterization of in-plane and out-of-plane molecular orientation	250

3.1.2.	ESR spectroscopy using isotope-substituted dyes	258
3.1.3.	Light-induced ESR of merocyanine dye LB films	260
3.2.	ESR studies of Cu-porphyrin films mixed with "trigger molecules"	264
3.2.1.	Monomer porphyrin with hexatriacontane, the trigger	264
3.2.2.	Dimer-type porphyrin with trigger	269
3.3.	Other examples	272
4.	Concluding remarks	275
5.	Acknowledgment	276
6.	References	276

CHAPTER 7

BIOTIN-STREPTAVIDIN SENSOR SURFACE: A VERSATILE PLATFORM	279
FOR PERFORMING DNA HYBRIDIZATION INTERACTIONS	

Dev Kambhampati and Wolfgang Knoll

1.	Introduction	279
2.	Experimental Methods	281
2.1.	Materials	281
2.2.	Surface Architecture	281
2.3.	Detection Techniques	283
2.4.	Kinetic Models	284
3.	Results and Discussion	285
3.1.	Sensor Surface Topology	285
3.2.	Non-specific Interaction Analysis	285
3.3.	Regeneration of Sensor Surface	287
3.4.	DNA Hybridization Interactions using P1 probes (15 T spacer and 15mer recognition sequence)	290
3.5.	DNA Hybridization Interactions using P2 probes (30 T spacer and 15mer recognition sequence)	295
3.6.	Melting' Analysis of Hybridization Interactions	299

3.7.	Effect of Temperature on Hybridization Interactions	306
4.	Conclusions	312
5.	Acknowledgements	313
6.	References	313
CHAPTER 8 APPLICATIONS OF ORGANISED MOLECULAR FILMS TO ELECTRONIC AND OPTO-ELECTRONIC DEVICES		317
Michael C. Petty		
1.	Introduction	318
2.	Electrical Conductivity of Molecular Assemblies	319
2.1.	D.C. Conductivity	319
2.2.	A.C. Conductivity	324
3.	Application of Organic Multilayer Assemblies	328
3.1.	Organic Diodes and Transistors	328
3.2.	Light Emitting Displays	331
3.3.	Gas Sensors	338
3.4.	Ion Sensors	348
3.5.	Heat Sensors – Pyroelectric Devices	358
4.	Conclusions	359
5.	Acknowledgements	360
6.	References	360
SUBJECT INDEX		369