

Preface		
1.		
1.1.	Introduction	1
1.2.	Surfaces, surface tension and surface phenomena	2
1.2.1.	Surface chemistry of surfactants and basic adsorption phenomena	5
1.2.2.	Surface chemistry of surfactants	6
1.2.2.	Basic adsorption phenomena	9
1.3.	Adsorption dynamics and dynamic adsorption layers. Qualitative approach	11
1.4.	Some surface phenomena	13
1.4.1.	Dynamic contact angle and wetting	13
1.4.2.	Stability criteria for emulsions	18
1.4.3.	Solubilisation and microemulsion	22
1.4.4.	Spontaneous emulsification	25
1.5.	Organisation of the book	26
1.6.	References	27
2.	Thermodynamics and macro-kinetics of adsorption	30
2.1.	Definition of liquid interfaces	30
2.2.	Models of the surface of water	34
2.3.	General principles of equilibrium surface thermodynamics	37
2.4.	Adsorption at liquid/fluid interfaces	43
2.4.1.	Gibbs adsorption isotherm	43
2.4.2.	Adsorption of charged surfactants	45
2.5.	Treatment of the Langmuir adsorption isotherm as introduction to adsorption dynamics	47
2.6.	Adsorption isotherm for single and mixed surfactant systems	48
2.7.	Macro-kinetic aspects of Langmuir's theory and its application to adsorption dynamics	50
2.8.	Charged liquid interfaces	52
2.8.1.	General remarks on the nomenclature of charged interfaces	53
2.8.2.	The electrostatic double layer	53
2.8.3.	Example for the calculation of $\Delta\chi$ potential from known dipole moment of an adsorbed molecule in the normal direction to the interface	54
2.8.4.	Ion adsorption and electric double layer	55
2.8.5.	The distribution of ions in an electric field near a charged surface	55
2.8.6.	The Stern-Gouy-Chapman model	57
2.8.7.	The Model of the inner part of the electric double layer (DL)	58
2.8.8.	The models of adsorption and surface charge	58
2.8.9.	Extension of models of the inner part of the electrochemical double layer	60
2.9.	Summary	61
2.10.	References	62
3.	Surface phenomena, surface rheology and relaxations processes at liquid interfaces	68
3.1.	Relaxations and chemical reactions	69

3.2.	Stress-strain relationships - general description	72
3.3.	Brief Introduction Into Surface Rheology	75
3.4.	Surface rheology and adsorption dynamics in drainage processes of thin liquid films	83
3.5.	Surface rheology and stability of foams and emulsions	87
3.6.	Surface waves	91
3.7.	Summary	94
3.8.	References	96
4.	The dynamics of adsorption at liquid interfaces	100
4.1.	General idea of adsorption kinetics	101
4.2.	Theoretical models of diffusion-controlled adsorption kinetics	103
4.2.1.	Qualitative models	103
4.2.2.	Quantitative models of diffusion-controlled adsorption	105
4.2.3.	Analytical solution for a linear adsorption isotherm	109
4.2.4.	Collocation solution for a langmuir-type adsorption isotherm	109
4.3.	Diffusion-controlled adsorption of surfactant mixtures	111
4.4.	Kinetic-controlled models	113
4.5.	Models with time dependent interfacial area	115
4.5.1.	General consideration of interfacial area changes with time	115
4.5.2.	Consideration of interfacial area changes and radial flow for growing drops	117
4.5.3.	Adsorption kinetics model for the maximum bubble pressure method	120
4.6.	Adsorption kinetics of surfactants at liquid/liquid interfaces	122
4.7.	Adsorption kinetics from micellar solutions	124
4.8.	Adsorption process at the surface of laminar flowing liquid films	128
4.9.	Adsorption kinetics of polymers	130
4.10.	Asymptotic solutions	132
4.11.	Summary	134
4.12.	References	136
5.	Experimental technique to study adsorption kinetics	140
5.1.	Characterisation of the purity of surfactants and solvents	142
5.1.1.	Purity of surfactant solutions	143
5.1.2.	Purity of solvents	150
5.1.3.	Procedures to purify surfactant solutions	152
5.2.	Drop volume technique	153
5.3.	Maximum bubble pressure technique	157
5.4.	Pendent drop technique	163
5.5.	Growing drop methods	166
5.6.	The oscillating jet method	168
5.7.	The inclined plate technique	170
5.8.	Description of other dynamic methods for interfacial studies	171
5.8.1.	Other dynamic surface and interfacial tension methods	171
5.8.2.	Studies of adsorption kinetics with alternative experimental technique	173
5.9.	Experimental results from studies of surfactants at liquid interfaces	176
5.9.1.	The effective surface age in adsorption kinetics experiments	176

5.9.2.	Comparison of several experimental technique	178
5.9.3.	Simultaneous process of adsorption kinetics and transfer across the interface	183
5.9.4.	Determination of equilibrium adsorption data for slowly adsorbing surfactants	184
5.9.5.	Measurements of the formation of adsorption layers of solutions of nonionics containing oxyethylene groups	188
5.10.	Experimental studies of the adsorption dynamics of biopolymers at liquid interfaces	188
5.11.	Summary	192
5.12.	References	194
6.	Relaxation studies at liquid interfaces	202
6.1.	Introduction to interfacial relaxation studies	202
6.1.1.	Practical importance of mechanical properties and exchange of matter of soluble adsorption layers	202
6.1.2.	The different subjects of adsorption kinetics and relaxations at interfaces	205
6.2.	Interfacial relaxation techniques	207
6.2.1.	Techniques based on harmonic interfacial disturbances	207
6.2.2.	Techniques based on transient interfacial disturbances	212
6.3.	Interfacial relaxation methods	216
6.3.1.	Damping of capillary and longitudinal waves	217
6.3.2.	The oscillating bubble method	219
6.3.3.	The elastic ring method	220
6.3.4.	The modified pendent drop technique	220
6.3.5.	Drop pressure relaxation experiments	221
6.3.6.	Other relaxation experiments	222
6.4.	Experimental results of relaxation studies	223
6.4.1.	Surfactant adsorption layers	223
6.4.2.	Polymer adsorption layers	228
6.5	Summary	233
6.6.	References	234
7.	Effect of surfactant charge on the dynamics of adsorption	238
7.1.	Introduction	238
7.2.	The retardation of the steady transport of adsorbing ions through the diffuse part of double layer	242
7.2.1.	Equations and boundary conditions describing one-dimensional steady transport of adsorbing ions	244
7.2.2.	Non-equilibrium distribution of adsorbing ions along the diffuse layer and quasi-equilibrium distribution of counterions	246
7.2.3.	Coefficient of electrostatic retardation of adsorption	247
7.2.4.	The rate equation of ion adsorption	248
7.3.	The manifestation of electrostatic retardation in transient adsorption processes	249
7.3.1.	Differential equation of adsorption kinetics. General consideration	249

7.3.2.	The estimation of the influence of a non-equilibrium electric double layer on adsorption kinetics	250
7.4.	Dynamics of adsorption at harmonically disturbed surfaces	251
7.5.	Stages of adsorption kinetics of ionics under the condition of convective diffusion	255
7.6.	Adsorption kinetics model, taking into account the electrostatic retardation and a specific adsorption barrier	256
7.7.	The problem of ion adsorption models	258
7.8.	Electrostatic retardation in macro-ion adsorption	260
7.9.	A numeric solution to the problem	261
7.10.	Experimental investigations of adsorption kinetics of ionic surfactants	264
7.11.	Summary	266
7.12.	References	267
8.	Dynamic adsorption layer of buoyant bubbles. Diffusion-controlled transport of nonionic surfactants	269
8.1.	Basic problems	269
8.1.1.	Qualitative description of dynamic adsorption layers and surface retardation	270
8.1.2.	Bubble hydrodynamics and interfacial rheology	272
8.1.3.	Foundation of the theory of diffusion boundary layer and dynamic adsorption layer of moving bubbles	275
8.1.4.	Main stages in the development of physico-chemical hydrodynamics of bubble	278
8.1.5.	Role of dynamic adsorption layer in foams, emulsions, technologies	280
8.2.	Dynamic adsorption layer under condition of uniform surface retardation	281
8.2.1.	The case $Pe \ll 1$	281
8.2.2.	$Pe \gg 1, Re \ll 1$	283
8.3.	Theory of dynamic adsorption layer of bubble (drop) at $Re \ll 1$ and strong surface retardation	284
8.4.	Theory of dynamic adsorption and diffusion boundary layers of a bubble with $Pe \gg 1, Re \ll 1$ and weak surface retardation	289
8.5.	Hypothesis of incomplete retardation of a bubble surface at $Re < 1$ and presence of a dynamic adsorption layer	295
8.5.1.	Hypothesis of incomplete retardation	295
8.5.2.	Use of the Dorn effect to check the incomplete retardation of a buoyant bubble surface	298
8.6.	Theory of dynamic adsorption layer of a bubble and retardation of its surface at large Reynolds numbers	300
8.6.1.	Conditions of realisation of different states of dynamic adsorption layer formation of a buoyant bubble	301
8.6.2.	The theory of a dynamic adsorption layer of a bubble with $Re \gg 1$ and weak surface retardation	304
8.6.3.	Weak surface retardation	306
8.7.	The rear stagnant region of a buoyant bubble	308

8.7.1.	Special features of the process of dynamic adsorption layer formation in the rear stagnant region	308
8.7.2.	Structure of the rear stagnant region of a bubble	309
8.7.3.	The rear stagnant cap and bubble buoyant velocity at small Re	312
8.8.	Total amount of surfactant at mobile bubble surfaces	313
8.8.1.	Bubble fractionation and dynamic adsorption layer	313
8.8.2.	Estimation of time of steady-state establishment of the dynamic adsorption layer of buoyant bubbles	314
8.8.3.	Evaluation of the total amount of surfactant on mobile bubble surfaces	316
8.8.4.	Experimental investigation of the time dependence of bubble buoyancy	317
8.9.	Summary	319
8.10.	References	321
9.	Dynamic adsorption layers of surfactants at the surface of buoyant bubbles. Kinetic-controlled surfactant transport to and from bubble surfaces	323
9.1.	Dynamic adsorption layers of nonionic surfactants	323
9.2.	Dynamic adsorption layers of ionic surfactants	328
9.2.1.	Equations and boundary conditions describing the formation of the dynamic adsorption layer of a bubble in presence of ionic surfactants	329
9.2.2.	Distribution of adsorption of ionic surfactants over weakly retarded bubble surfaces in the case where the adsorbed surfactant is almost completely moved to the rear stagnation pole	330
9.3	Structure of rear stagnant cap of a bubble rising in solution of ionic surfactant at $Re \ll 1$	331
9.4.	Conditions of realization of regimes of ionic surfactant dynamic adsorption layer formation	333
9.5.	The size of the stagnant cap of the bubble (droplet) using surfactants with a slow rate desorption	337
9.6.	Summary	340
9.7.	References	341
10.	Dynamic adsorption layer in microflootation	342
10.1	Mechanism of transfer of small particles to bubble surface	343
10.1.1.	Specific features of the mechanism of transfer of small particles to the bubble Surface	343
10.1.2.	Quantitative theory of flotation of small spherical particles	345
10.2.	Effect of dynamic adsorption layer on the transport stage of the elementary flotation act	351
10.2.1.	Influence of surface retardation by DAL on transport stage.	351
	Qualitative considerations	
10.2.2.	Equation for particle flux on bubble surface	352
10.2.3.	Application of equation of particle flux to estimation of role of surface retardation and sedimentation	354
10.2.4.	DAL influence on transport stage of microflootation and level of water contamination	356

10.2.5.	Free surface zone near front stagnant point	359
10.2.6.	Particle deposition on the free zone near the front stagnant point.	360
10.2.7.	Contaminated water	
10.2.7.	Bubble buoyancy for a wide range of Reynolds numbers and different degrees of water contamination, and the free surface zone near the front stagnant point	361
10.2.8	Role of r.s.c. in transport stage at different particle attachment mechanisms	365
10.3.	Investigation of microflotation kinetics as a method of DAL studies	365
10.3.1.	Hypothesis of incomplete retardation of bubble surfaces at $Re < 40$	366
10.3.2	Investigation of the state of surface of bubbles rising in a thin layer of liquid	367
10.3.3.	Investigation of DAL under condition of large Reynolds numbers	368
10.4.	Dynamic adsorption layer and optimisation of transport stage of flotation	369
10.5.	Specific features of the mechanism involving attachment of small particles on the surface of a bubble	370
10.5.1.	General consideration	370
10.5.2.	Pressing force and collectorless microflotation	375
10.5.3.	Experimental corroborations	379
10.6.	Influence of dynamic adsorption layer on attachment of small particles on bubble surface	383
10.7.	Influence of dynamic adsorption layer on small particle detachment	385
10.8.	Perfection of microflotation by governing dynamic adsorption layer	386
10.9.	Effect of particle aggregation on elementary microflotation act and dynamic adsorption layer	387
10.10.	Collision efficiency, bubble velocity and microflotation kinetics	389
10.11.	Bubble coalescence and dynamic adsorption layer	389
10.12.	Two-stage flotation of micron and submicron particles and dynamic adsorption layer	392
10.13.	Selection and application of cationic surfactant in microflotation and dynamic adsorption layer	393
10.14.	Negative effect of inertia forces on flotation of small particles.	395
10.14.	Generalisation of Sutherland's formula. Extension of limits of applicability of microflotation theory	
10.15.	Influence of dynamic adsorption layer on inertia forces in microflotation	403
10.15.1	Low surface activity	403
10.15.2.	High surface activity	404
10.16.	Effect of hydrodynamic boundary layer on elementary act of microflotation and dynamic adsorption layer of bubbles	405
10.16.1.	Hydrodynamic boundary layer at a slightly retarded bubble surface	405
10.16.2.	Hydrodynamic boundary layer near strongly retarded bubble surface and Sutherland's formula	405
10.16.3.	Lift-forces	406

10.16.4.	Unsuitability of traditional methods for describing particle transport through hydrodynamic boundary layer of almost completely retarded bubble surface	407
10.16.5.	Experimental and theoretical investigations of collision efficiency in a wide range of Reynolds numbers at strongly retarded bubble surface	408
10.17.	Summary	409
10.18.	References	417
11.	Dynamic adsorption layer in flotation	422
11.1.	Quasi-elastic collision	423
11.2.	Inelastic collision	427
11.3.	Prevention of particle deposition on bubble surface at $\Theta > \Theta_t$ under the effect of centrifugal force	431
11.4.	Particle reflection from a bubble surface	436
11.5.	Prevention of particle deposition on bubble surface at angles $\theta < \theta_{ocr}$ due to joint action of particle reflection from a bubble surface and centrifugal forces	438
11.6.	Estimation of collision efficiency	440
11.7.	Kinetics of extension of three-phase contact	442
11.8.	Attachment by collision.	444
11.8.1.	Stages of attachment by collision before and after contact	444
11.8.2	Attachment by repeated collision	446
11.8.3.	Effect of particle shape on attachment by collision	448
11.8.4.	Schulze's superposition model	449
11.9.	Influence of dynamic adsorption layer on attachment by collision	450
11.10.	Attachment by sliding at potential flow. The role of particle rebound and critical film thickness	452
11.10.1	Classification of multistage collision / attachment process at potential flow and $St > St_{cr}$	452
11.10.2.	Influence of recoil and critical film thickness on attachment by sliding	452
11.10.3.	The theory of short range hydrodynamic interaction	454
11.10.4.	Influence of particle and bubble properties on collision efficiency	457
11.11.	Influence of dynamic adsorption layer on attachment process by sliding	459
11.12.	Investigations of collision and attachment stages of both microflotation and flotation	461
11.12.1.	Importance and difficulty in flotation of a big particle	461
11.12.2	Similarity in microflotation and flotation with respect to attachment and their divergence with respect to collision	462
11.12.3.	Investigation of collision and attachment stages for both microflotation and flotation	463
11.13.	Influence of dynamic adsorption layer on detachment	467
11.14.	Summary	468
11.15.	References	471
12.	Non-equilibrium surface forces caused by dynamic adsorption layers and their relevance in film stability and flotation	473

12.1.	The effect of the dynamic adsorption layer on coagulation	473
12.2.	The influence of the ionic adsorption layer upon coagulation processes	475
12.3.	The liquid interlayer stabilization by dynamic adsorption layers in elementary flotation act	476
12.4.	Estimation of effectiveness of particles capture considering liquid interlayer stabilisation by dynamic adsorption layers	482
12.5.	Non-equilibrium surface forces of diffusion-electrical nature in flotation	484
12.6.	Summary	486
12.7.	References	487
Appendix 2A:	General principles of the degrees of freedom of interfaces	488
Appendix 2B:	Discussion of Further Adsorption Isotherms	489
2B.1.	Hückel-Cassel Isotherm	489
2B.2.	The Volmer Adsorption Isotherm	492
2B.3.	The Butler-Volmer-Equation	492
Appendix 2C.	Non-Equilibrium Surface Thermodynamics	493
Appendix 2D:	Thermodynamics of Thin Liquid Films	496
Appendix 3A:	Sound Propagation in Liquid/Fluid Disperse systems and Chemical Reaction	501
Appendix 3B:	Dynamic Contact Angles	506
Appendix 3C:	Marangoni-instabilities and dissipative structures	508
Appendix 3D:	Lateral Transport Phenomena	513
Appendix 4A:	Numerical solution of the integral equation of Ward and Tordai	514
Appendix 4B:	Numerical solution of the function $\exp(x^2)\text{erfc}(x)$	515
Appendix 4C:	Finite difference scheme to solve the initial and boundary condition problem of a diffusion controlled adsorption model	518
Appendix 4D:	Finite difference scheme to solve the initial and boundary condition problem of a diffusion controlled adsorption model for a two component surfactant system	521
Appendix 4E:	Application of the Laplace transform to solve the diffusion-controlled adsorption kinetics model	521
Appendix 4F:	Polynomial parameters of the collocation solution Eq. (4.25) after Ziller & Miller (1986)	524
Appendix 5A:	Correction Factors after Wilkinson (1972) in the form r_{cap}/a as a function of $r \cdot V^{-1/3}$	525
Appendix 5B:	Density and viscosity of selected liquids	529
Appendix 5C:	Surface tension of selected liquids and its interfacial tension to water	530
Appendix 5D:	Isotherm parameters of selected surfactants	531
Appendix 5E:	Mutual solubility of organic solvents and water	533
Appendix 5F:	Numerical algorithm to solve the Gauss-Laplace equation	533
Appendix 5G:	Dynamic surface tensions in the sub-millisecond range	535
Appendix 6A:	Application of system theory for the determination of interfacial tension Response functions to small interfacial area disturbances	537
Appendix 6B:	Interfacial tension response functions $\Delta\gamma(t)$ to harmonic and several types of transient area disturbances	537

Appendix 6C:	Interfacial pressure response to area disturbances in presence of insoluble monolayers	540
Appendix 7A:	The approximate integration of the differential equation of adsorption of multivalent ions	541
Appendix 8A:	Small rear stagnant cap of bubble at high Reynolds numbers	544
Appendix 10A:	Processes restricting water purification by microflootation, and prevention of bubble surface retardation	547
Appendix 10B:	Role of r.s.c. in transport stage at different particle attachment mechanisms	548
Appendix 10C:	Choice of hydrodynamic regime under production conditions. Decimicrone-size particle	549
Appendix 10D:	New development in surface forces	551
Appendix 10E:	Microflootation of submicron, micron and decimicron particles	557
10E.1.	Micron and submicron particles. Air-dissolved flotation and microflootation	557
10E.2.	Decimicron particles	558
Appendix 10F:	Flotation with centimicron and millimeter bubbles	558
10F.1.	The use of centimicron bubbles	558
10F.2.	Use of millimeter bubbles	559
Appendix 10G:	Flotation with bubbles between millimeter and centimicron	559
Appendix 10H:	Possibility of microbubble capture from below, dynamic adsorption layer and possibility of decrease of surfactant consumption	560
Appendix 10I:	Air-dissolved flotation and two-stage flotation	561
Appendix 10J:	Industrial application of two-stage microflootation	561
Appendix 10K:	Bubble polydispersity in two-stage flotation	562
Appendix 10L:	Two-stage microflootation with particle aggregation	563
Appendix 10M:	Comments on the role of boundary layer and centrifugal force as discussed by Mileva (1990)	564
10M.1.	Lift force	564
10M.2.	Reynolds numbers characterising the particle motion relative to the liquid	565
10M.3.	Lift force and centrifugal force	565
Appendix 11A:	Correction of the calculation of centrifugal forces at $St > St_c$	565
Appendix 11B:	Analysis the theory by Schulze and co-worker on attachment by collision	566
List of Symbols		568
Subject Index		573