

Contents

Preface

xi

PART I Principles

Chapter 1 – Introduction to Surfaces and Interfaces	3
1.1 Definition of a Surface and an Interface	3
1.2 Liquids and Liquid Surfaces	4
1.3 Surface Area to Volume Ratio	5
1.4 Solids and Solid Surface Roughness	6
1.5 Chemical Heterogeneity of Solid Surfaces	7
Chapter 2 – Molecular Interactions	9
2.1 Intramolecular Forces: Formation of a Molecule by Chemical Bonding	9
2.1.1 Interatomic forces, bonds	9
2.1.2 Molecular geometry	11
2.1.3 Dipole moments	11
2.2 Intermolecular Forces and Potential Energies	18
2.3 Coulomb Interactions	24
2.4 Polar Interactions	27
2.4.1 Interactions between ions and dipolar molecules (fixed and rotating)	27
2.4.2 Interactions between dipolar molecules (fixed)	30
2.4.3 Keesom orientation interactions: interactions between dipolar molecules (rotating)	31
2.5 Induction Effects: Interactions Between Induced Non-polar and Polar Molecules	32
2.5.1 Polarizability of non-polar molecules	32
2.5.2 Polarizability of polar molecules	34
2.5.3 Solvent medium effects and excess polarizabilities	34
2.5.4 Interactions between ions and induced non-polar molecules	35
2.5.5 Interactions between ions and induced polar molecules	36

2.5.6	Interactions between dipolar molecules and induced non-polar molecules (fixed)	37
2.5.7	Debye interactions: interactions between dipolar molecules and induced dipolar molecules (rotating)	37
2.5.8	Unification of angle-averaged induction interactions	38
2.6	van der Waals Interactions	39
2.6.1	London dispersion interactions	40
2.6.2	Correllation with van der Waals constants	43
2.6.3	Comparison of Keesom, Debye and London interactions in polar molecules	46
2.6.4	van der Waals interactions in a medium	47
2.7	Repulsive Interactions, Total Interaction Pair Potentials	48
2.7.1	van der Waals radius	49
2.7.2	Repulsive pair potentials	49
2.7.3	Total intermolecular pair potentials, Mie and Lennard-Jones potentials	50
2.7.4	Application of total intermolecular pair potentials in a liquid medium	51
2.8	Hydrogen-bonding Interactions	52
2.8.1	Properties of hydrogen bonds	54
2.8.2	Hydrogen bonds in water	55
2.9	Hydrophobic and Hydrophilic Interactions	57
2.9.1	Hydrophobic effect	58
2.9.2	Hydrophobic interactions	59
2.9.3	Hydrophilic interactions	60
Chapter 3 – Thermodynamics of Interfaces		62
3.1	Introduction of Thermodynamical Concepts	62
3.1.1	Thermodynamical expressions for closed systems	63
3.1.2	Thermodynamical expressions for open systems	73
3.1.3	Equilibrium between phases in heterogeneous closed systems	78
3.2	Gibbs Dividing Interface	81
3.2.1	Thermodynamical definition of an interface	81
3.2.2	Physical description of a real liquid interface	82
3.2.3	Definitions of surface and interfacial free energy, and surface and interfacial tension	85
3.2.4	Surface free energy and surface tension of liquids	86
3.2.5	Thermodynamics of Gibbs dividing interface and surface excess functions	90
3.3	Thermodynamics of Adsorption	97
3.3.1	Gibbs adsorption isotherm	99
3.3.2	Surface equation of state	102
3.4	Conditions of Equilibrium where Several Surfaces Intersect	102
3.5	Relation of Thermodynamic Parameters with Intermolecular Forces	103
3.5.1	Internal pressure and van der Waals constants	105

3.5.2	Relation of van der Waals constants with molecular pair potentials	106
3.5.3	Cohesive energy and close-packed molecules in condensed systems	109
3.5.4	Derivation of Trouton's rule	111
3.5.5	Molecular interactions at the surface	113

PART II Liquids

Chapter 4 – Pure Liquid Surfaces		117
4.1	What is a Liquid State?	117
4.2	Phase Transition of Pure Liquids	121
4.2.1	Liquid–vapor boundary: vapor pressure change by temperature: Clausius–Clapeyron Equation	123
4.2.2	Liquid–solid boundary	125
4.3	Curved Liquid Surfaces: Young–Laplace Equation	126
4.3.1	Young–Laplace equation from Newton mechanics	127
4.3.2	Young–Laplace equation from curvature	128
4.3.3	Young–Laplace equation from plane geometry	135
4.4	Capillarity	136
4.5	Liquid Surface Tension Variation by Temperature	140
4.6	Parachor	142
4.7	Liquid Surface Tension Variation by Pressure: Kelvin Equation	143
4.8	Capillary Condensation	147
4.9	Nucleation	149
4.9.1	Homogeneous nucleation during a phase transition	150
4.9.2	Rate of homogeneous nucleation	153
4.9.3	Heterogeneous nucleation during a phase transition	154
Chapter 5 – Liquid Solution Surfaces		156
5.1	Equilibrium in Solutions	156
5.2	Mixing and Excess Thermodynamic Functions	158
5.2.1	Mixing of ideal gas and liquid solutions	158
5.2.2	Excess thermodynamic functions	159
5.3	Regular Solutions and Solubility Parameter Approach	161
5.3.1	Cohesive energy density	161
5.3.2	Solubility parameter approach	165
5.3.3	Three-component solubility parameters	166
5.4	Solutions Containing Surface-active Solutes	169
5.4.1	Effect of hydrophilic and hydrophobic group types	171
5.4.2	Types of surfactant	172
5.4.3	HLB method	175
5.5	Gibbs Surface Layers of Soluble Materials on Liquid Solutions	176
5.5.1	Gibbs monolayers: thermodynamics of adsorption	176
5.5.2	Spreading pressure	180
5.5.3	Gaseous monolayers: two-dimensional perfect gas	182

5.5.4	Adsorption on a water surface	186
5.5.5	Adsorption on surfaces other than water	188
5.5.6	Molecular orientation at the interface	189
5.5.7	Marangoni effect	189
5.6	Langmuir Surface Layers of Insoluble Materials on Liquids	190
5.6.1	Spreading of one liquid on another	193
5.6.2	Experimental determination of spreading pressure in monolayers: Langmuir balance	197
5.6.3	Expanded and condensed Langmuir monolayers	199
5.6.4	Monolayers between two immiscible liquids for three-component solutions	201
5.7	Micelles and Critical Micelle Concentration (CMC)	201
5.8	Bilayers, Vesicles, Liposomes, Biological Cell Membranes and Inverted Micelles	207
5.8.1	Bilayers and vesicles	207
5.8.2	Liposomes	208
5.8.3	Biological cell membranes	209
5.8.4	Inverted micelles	210
5.9	Use of Micelles in Emulsion Polymerization	210
5.10	Coating Mono- and Multilayers on Solid Substrates: Langmuir–Blodgett Method	213
5.10.1	Monolayer film transfer to solids	214
5.10.2	Multilayer film transfer to solids	217
5.10.3	Properties of LB films	221

Chapter 6 – Experimental Determination of Surface Tension at Pure Liquid and Solution Surfaces/Interfaces

6.1	Liquid Surface Tension from the Capillary Rise Method	223
6.2	Drop Volume and Drop Shape Methods, Video-image Digitization Techniques	231
6.2.1	Drop volume or drop weight method	231
6.2.2	Drop shape method and video-image digitization techniques	234
6.3	Maximum Bubble Pressure Method	234
6.4	Ring, Wilhelmy Plate Detachment and the Height of a Meniscus on a Vertical Plane Methods	236
6.4.1	du Noüy ring method	236
6.4.2	Wilhelmy plate method	238
6.4.3	Height of a meniscus on a vertical plane method	242
6.5	Dynamic Surface Tension Measurement Methods	244
6.5.1	Dynamic maximum bubble pressure method	244
6.5.2	Spinning drop tensiometer method	245
6.6	Methods Applicable to Interfaces Between Two Liquids	246
6.7	Microtensiometry	247
6.7.1	Micropipette tensiometry	247
6.7.2	Atomic force microscopy tensiometry	248
6.8	Measurements on Molten Metals	248
6.9	Surface Tension of Surfactant Solutions	249

Chapter 7 – Potential Energy of Interaction Between Particles and Surfaces	250
7.1 Similarities and Differences Between Intermolecular and Interparticle Forces	250
7.2 Combining Rules for Molecular, Particle and Surface Interactions	252
7.3 van der Waals Interactions Between Macroscopic Bodies	254
7.3.1 Microscopic approach of Hamaker between a molecule and a slab surface	255
7.3.2 Microscopic approach of Hamaker between a spherical particle and a slab surface	257
7.3.3 Microscopic approach of Hamaker between spherical particles	260
7.3.4 Microscopic approach of Hamaker between parallel slab surfaces	261
7.3.5 Microscopic approach of Hamaker between cylinder surfaces	263
7.3.6 Comparison of sphere–surface and sphere–sphere interactions with surface–surface interactions: Langbein approximation	263
7.3.7 Derjaguin approximation	264
7.3.8 Macroscopic approach of Lifshitz	265
7.4 Experimental Measurement of the Hamaker Constant	268
7.5 Relation Between Hamaker Constant and Surface Tension	270
7.6 Solvent Effects on Particle and Surface Interactions	272
7.6.1 Solvent effects on molecular interactions	272
7.6.2 Combining rules for three-component systems: molecules, particles and surfaces in a third medium	273

PART III Solids

Chapter 8 – Solid Surfaces	279
8.1 General Properties of Solid Surfaces and Their Experimental Investigation	279
8.1.1 Properties of solid surfaces	279
8.1.2 Experimental investigation of solid surfaces and the requirement for ultra-high vacuum	281
8.2 Surface Tension, Surface Free Energy and Surface Stress of Solids	284
8.2.1 Surface stress and its relation with surface tension and surface free energy of solid surfaces	284
8.2.2 Theoretical estimation of the surface free energy of solids	285
8.2.3 Experimental determination of surface free energy of solids	287
8.3 Gas Adsorption on Solids	288
8.3.1 Physisorption on a gas–solid interface	289
8.3.2 Chemisorption on a gas–solid interface	290
8.3.3 Thermodynamics of gas adsorption on solids: relation with the Gibbs adsorption equation	291
8.3.4 Experimental determination of adsorption isotherms	293
8.3.5 Types of adsorption isotherm	294
8.3.6 Ideal gas behavior: Henry’s law limit	296

8.3.7	Langmuir adsorption isotherm	297
8.3.8	B.E.T. multi-layer adsorption isotherm	300
8.3.9	Other adsorption isotherms	302
8.3.10	Heat of adsorption	303
8.4	Catalytic Activity at Surfaces	305
Chapter 9 – Contact Angle of Liquid Drops on Solids		308
9.1	Definition, Young's Equation and Use of Contact Angles in Industry	308
9.1.1	Theory of contact angles	308
9.1.2	Industrial applications of contact angles	311
9.2	Measurement of Static Contact Angles	312
9.2.1	Direct measurement of static contact angle by video camera or goniometer	313
9.2.2	Captive bubble method	315
9.2.3	Sliding drop on an inclined plate method	316
9.2.4	Drop dimensions method	316
9.2.5	Static Wilhelmy plate method	318
9.3	Dynamic Contact Angle Measurement	318
9.4	Liquid Evaporation Effects During Contact Angle Measurement	321
9.4.1	Receding contact angle determination from drop evaporation	321
9.4.2	Drop evaporation theory for spherical and ellipsoidal drops	321
9.5	Contact Angle of Powders	324
9.6	Contact Angle Hysteresis and its Interpretation	325
9.6.1	Effect of surface roughness	326
9.6.2	Effect of chemical heterogeneity	327
9.6.3	Other reasons for contact angle hysteresis	328
9.7	Temperature Dependence of Contact Angle	329
9.8	Solid Surface Tension Calculations from Contact Angle Results	330
9.8.1	Critical surface tension of solids (Zisman's method)	330
9.8.2	Geometric-mean approach (Fowkes' and later Owens and Wendt's method)	331
9.8.3	Harmonic-mean approach (Wu's method)	333
9.8.4	Equation of state approach (Neumann's method)	333
9.8.5	Acid-base approach (van Oss–Good method)	334
Chapter 10 – Some Applications Involving Solid–Liquid Interfaces		338
10.1	Adsorption from Solution	338
10.1.1	Properties and experimental aspects	338
10.1.2	Composite adsorption isotherms from binary liquid mixtures	339
10.1.3	Individual adsorption isotherms from dilute solutions	341
10.2	Detergency	342
10.2.1	Mechanisms of detergent action	342
10.2.2	Properties of a good detergent	345
10.2.3	Functions of detergent additives	345
<i>Index</i>		347