

CONTENTS

1 The Evolving Realm of Inorganic Chemistry 1

Summary 6

PART I COORDINATION CHEMISTRY 7

2 An Introduction to Coordination Chemistry 9

2.1 The Historical Perspective	10
2.2 The History of Coordination Compounds	12
Early Compounds	12
The Blomstrand–Jørgensen Chain Theory	13
The Werner Coordination Theory	15
2.3 The Modern View of Coordination Compounds	18
2.4 An Introduction to the Nomenclature of Coordination Compounds	21
Summary	26
Problems	27

3 Structures of Coordination Compounds 33

3.1 Stereoisomers	33
3.2 Octahedral Coordination Spheres	37
Compounds with Monodentate Ligands	37
Compounds with Chelating Ligands	40
3.3 Square Planar Coordination Spheres	44
3.4 Tetrahedral Coordination Spheres	45
3.5 Other Coordination Spheres	45
3.6 Structural Isomers	48
Summary	50
Problems	51

4 Bonding Theories for Coordination Compounds 57

4.1 Early Bonding Theories	58
The Lewis Acid–Base Definition	58
Crystal Field, Valence-Bond, and Molecular Orbital Theories	59
4.2 Crystal Field Theory	60
Shapes of $3d$ Orbitals	60
Octahedral Fields	64

Tetragonally Distorted Octahedral and Square Planar Fields	66
Tetrahedral Fields	68
4.3 Consequences and Applications of Crystal Field Splitting	69
Crystal Field Splitting Energies versus Pairing Energies	69
Crystal Field Stabilization Energies	71
Factors Affecting the Magnitude of the Crystal Field Splitting Energies	73
Magnetic Properties	78
Absorption Spectroscopy and the Colors of Coordination Compounds	80
Summary	85
Problems	86
5 Rates and Mechanisms of Reactions of Coordination Compounds	95
5.1 A Brief Survey of Reaction Types	95
5.2 Labile and Inert Coordination Compounds	99
5.3 Substitution Reactions of Octahedral Complexes	100
Possible Mechanisms	100
Experimental Complications	103
Evidence for Dissociative Mechanisms	104
Explanation of Inert versus Labile Complexes	109
5.4 Redox, or Electron-Transfer, Reactions	113
Outer-Sphere Mechanisms	113
Inner-Sphere Mechanisms	115
5.5 Substitution Reactions in Square Planar Complexes: The Kinetic Trans Effect	117
Summary	120
Problems	121
6 Applications of Coordination Compounds	129
6.1 Applications of Monodentate Complexes	129
6.2 Two Keys to the Stability of Transition Metal Complexes	132
Hard and Soft Acids and Bases	132
The Chelate Effect	134
6.3 Applications of Multidentate Complexes	135
6.4 Chelating Agents as Detergent Builders	138
6.5 Bioinorganic Applications of Coordination Chemistry	140
Oxygen Transport	140
Therapeutic Chelating Agents for Heavy Metals	142
Platinum Antitumor Agents	145
Ruthenium Antitumor Agents	147
Summary	149
Problems	150

PART II SOLID-STATE CHEMISTRY 155

7 Solid-State Structures 157	
7.1 Types of Crystals 157	
Ionic Crystals 157	
Metallic Crystals 159	
Covalent Network Crystals 159	
Atomic–Molecular Crystals 160	
7.2 A-Type Crystal Lattices 161	
Space Lattices and Unit Cells 161	
A-Type Lattices 162	
7.3 AB _n -Type Crystal Lattices 171	
Cubic, Octahedral, and Tetrahedral Holes 172	
Radius Ratios 173	
Ionic Radii 175	
AB Structures 176	
AB ₂ Structures 182	
7.4 Structures Involving Polyatomic Molecules and Ions 184	
7.5 Defect Structures 186	
7.6 Spinel Structures: Connecting Crystal Field Effects with Solid-State Structures 188	
Summary 189	
Problems 190	

8 Solid-State Energetics 197

8.1 Lattice Energy: A Theoretical Evaluation 197	
8.2 Lattice Energy: Thermodynamic Cycles 204	
Electron Affinities 207	
Heats of Formation for Unknown Compounds 208	
Thermochemical Radii 210	
8.3 Lattice Energies and Ionic Radii: Connecting Crystal Field Effects with Solid-State Energetics 210	
Summary 213	
Problems 214	

PART III DESCRIPTIVE CHEMISTRY OF THE REPRESENTATIVE ELEMENTS 221

9 Building a Network of Ideas to Make Sense of the Periodic Table 223	
9.1 The Periodic Law 225	
Effective Nuclear Charge 229	
Slater's Rules: Empirical Rules for Determining Sigma 231	
Atomic Radii 232	
Ionization Energy 233	

Electron Affinity	234
Electronegativity	235
9.2 The Uniqueness Principle	237
The Small Size of the First Elements	237
The Increased Likelihood of Pi Bonding in the First Elements	238
The Lack of Availability of <i>d</i> Orbitals in the First Elements	238
9.3 The Diagonal Effect	239
9.4 The Inert-Pair Effect	242
9.5 The Metal–Nonmetal Line	244
The Status of the Network of Interconnected Ideas	245
Summary	246
Problems	248

10 Hydrogen and Hydrides 255

10.1 The Origin of the Elements (And of Us!)	255
10.2 Discovery, Preparation, and Uses of Hydrogen	258
10.3 Isotopes of Hydrogen	260
10.4 Radioactive Processes Involving Hydrogen	263
Alpha and Beta Decay, Nuclear Fission, and Deuterium	263
Tritium	265
10.5 Hydrides and the Network	266
Covalent Hydrides	268
Ionic Hydrides	269
Metallic Hydrides	270
10.6 The Role of Hydrogen in Various Alternative Energy Sources	271
The Hydrogen Economy	271
Nuclear Fusion	273
Summary	274
Problems	274

11 Oxygen, Aqueous Solutions, and the Acid–Base Character of Oxides and Hydroxides 283

11.1 Oxygen	283
Discovery	283
Occurrence, Preparation, Properties, and Uses	285
11.2 Water and Aqueous Solutions	287
The Structure of the Water Molecule	287
Ice and Liquid Water	289
Solubility of Substances in Water	291
Self-Ionization of Water	294
11.3 The Acid–Base Character of Oxides and Hydroxides in Aqueous Solution:	
The Sixth Component of the Interconnected Network of Ideas for Understanding the Periodic Table	295
Oxides: General Expectations from the Network	295

Oxides in Aqueous Solution (Acidic and Basic Anhydrides)	296
The E–O–H Unit in Aqueous Solution	299
An Addition to the Network	300
11.4 The Relative Strengths of Oxoacids and Hydroacids in Aqueous Solution	300
Oxoacids	300
Nomenclature of Oxoacids and Corresponding Salts (Optional)	303
Hydroacids	304
11.5 Ozone	306
11.6 The Greenhouse Effect and Global Warming	308
Summary	313
Problems	313

12 Group 1A: The Alkali Metals 321

12.1 Discovery and Isolation of the Elements	321
12.2 Fundamental Properties and the Network	325
Hydrides, Oxides, Hydroxides, and Halides	326
Application of the Uniqueness Principle and Diagonal Effect	328
12.3 Reduction Potentials and the Network	330
12.4 Peroxides and Superoxides	338
Peroxides	338
Superoxides	341
12.5 Reactions and Compounds of Practical Importance	342
12.6 Selected Topic in Depth: Metal–Ammonia Solutions	343
Summary	346
Problems	347

13 Group 2A: The Alkaline-Earth Metals 353

13.1 Discovery and Isolation of the Elements	353
Calcium, Barium, and Strontium	355
Magnesium	355
Beryllium	356
Radium	356
13.2 Fundamental Properties and the Network	358
Hydrides, Oxides, Hydroxides, and Halides	360
Uniqueness of Beryllium and Diagonal Relationship to Aluminum	361
13.3 Reactions and Compounds of Practical Importance	363
Beryllium Disease	363
Radiochemical Uses	364
Metallurgical Uses	364
Fireworks and X Rays	365
Hard Water	365
Calcium in Bone and Teeth Structure	367

13.4 Selected Topic in Depth: The Commercial Uses of Calcium Compounds	368
CaCO ₃ (Limestone)	368
CaO (Quicklime) and Ca(OH) ₂ (Slaked Lime)	371
Summary	372
Problems	373

14 The Group 3A Elements 377

14.1 Discovery and Isolation of the Elements	377
Boron	377
Aluminum	378
Gallium	380
Indium and Thallium	381
14.2 Fundamental Properties and the Network	381
Hydrides, Oxides, Hydroxides, and Halides	385
14.3 Structural Aspects of Boron Chemistry	389
Allotropes	389
Borides	389
Borates	392
14.4 Reactions and Compounds of Practical Importance	393
Aluminum Metal and Alloys	393
Alums	395
Alumina	395
Boron Neutron Capture Therapy	396
Gallium, Indium, and Thallium Compounds	397
14.5 Selected Topic in Depth: Electron-Deficient Compounds	397
Summary	406
Problems	408

15 The Group 4A Elements 413

15.1 Discovery and Isolation of the Elements	413
Carbon, Tin, and Lead	414
Silicon	416
Germanium	416
15.2 Fundamental Properties and the Network	417
Hydrides	417
Oxides and Hydroxides	420
Halides	421
15.3 An Eighth Component of the Interconnected Network: $d\pi-p\pi$ Bonding Involving Elements of the Second and Third Periods	422
15.4 Reactions and Compounds of Practical Importance	426
Diamond, Graphite, and the Graphenes	426
Tin Disease	433
Radiochemical Uses	433

Carbon Compounds	435
Lead Compounds and Toxicology	435
15.5 Silicates, Silica, and Aluminosilicates	438
Silicates and Silica	438
Aluminosilicates	442
15.6 Selected Topics in Depth: Semiconductors and Glass	443
Semiconductors	443
Glass	446
Summary	447
Problems	449
 16 Group 5A: The Pnicogens 455	
16.1 Discovery and Isolation of the Elements	455
Antimony and Arsenic	456
Phosphorus	457
Bismuth	458
Nitrogen	458
16.2 Fundamental Properties and the Network	458
The Uniqueness Principle	458
$d\pi-p\pi$ Bonding Involving Elements of the Second and Third Periods	461
Other Network Components	463
Hydrides	463
Oxides and Oxoacids	464
Halides	466
16.3 A Survey of Nitrogen Oxidation States	467
Nitrogen (-3) Compounds: Nitrides and Ammonia	467
Nitrogen (-2): Hydrazine, N_2H_4	469
Nitrogen (-1): Hydroxylamine, NH_2OH	470
Nitrogen (+1): Nitrous Oxide, N_2O	470
Nitrogen (+2): Nitric Oxide, NO	472
Nitrogen (+3): Dinitrogen Trioxide, N_2O_3 , and Nitrous Acid, HNO_2	473
Nitrogen (+4): Nitrogen Dioxide, NO_2	474
Nitrogen (+5): Dinitrogen Pentoxide, N_2O_5 , and Nitric Acid, HNO_3	475
16.4 Reactions and Compounds of Practical Importance	476
Nitrogen Fixation	476
Nitrates and Nitrites	478
Nitrogen Air Bags	479
Matches and Phossy Jaw	480
Phosphates	482
16.5 Selected Topic in Depth: Photochemical Smog	484
Summary	490
Problems	491

17 Sulfur, Selenium, Tellurium, and Polonium	499
17.1 Discovery and Isolation of the Elements	499
Sulfur	500
Tellurium and Selenium (Earth and Moon)	501
Polonium	501
17.2 Fundamental Properties and the Network	502
Hydrides	505
Oxides and Oxoacids	505
Halides	508
17.3 Allotropes and Compounds Involving Element–Element Bonds	510
Allotropes	510
Polycations and Anions	511
Catenated Halides and Hydrides	512
Catenated Oxoacids and Corresponding Salts	513
17.4 Sulfur Nitrides	514
17.5 Reactions and Compounds of Practical Importance	516
Sodium–Sulfur Batteries	516
Photoelectric Uses of Selenium and Tellurium	517
Sulfuric Acid	518
17.6 Selected Topic in Depth: Acid Rain	519
Summary	523
Problems	524

18 Group 7A: The Halogens **531**

18.1 Discovery and Isolation of the Elements	531
Chlorine	531
Iodine	533
Bromine	534
Fluorine	534
Astatine	535
18.2 Fundamental Properties and the Network	535
Hydrides	539
Halides	540
Oxides	542
18.3 Oxoacids and Their Salts	542
Hypohalous Acids, HOX, and Hypohalites, OX [−]	544
Halous Acids, HOXO, and Halites, XO ₂ [−]	544
Halic Acids, HOXO ₂ , and Halates, XO ₃ [−]	545
Perhalic Acids, HOXO ₃ , and Perhalates, XO ₄ [−]	546
18.4 Neutral and Ionic Interhalogens	547
18.5 Reactions and Compounds of Practical Importance	550
Fluoridation	550
Chlorination	552
Bleaches	553
Bromides	554

18.6 Selected Topic in Depth: Chlorofluorocarbons (CFCs)—A Threat to the Ozone Layer	554
Summary	558
Problems	561
19 Group 8A: The Noble Gases	567
19.1 Discovery and Isolation of the Elements	567
Argon	568
Helium	570
Krypton, Neon, and Xenon	570
Radon	571
19.2 Fundamental Properties and the Network	571
19.3 Compounds of Noble Gases	574
History	574
Fluorides	575
Structures	576
Other Compounds	577
19.4 Physical Properties and Elements of Practical Importance	578
19.5 Selected Topic in Depth: Radon as a Carcinogen	581
Summary	583
Problems	584
Appendix	589
Index	603