

Contents

Preface

PART I: INTRODUCTION

1. A qualitative overview of the field	1
1.1. The objectives of chemical reactor development	1
1.2. The relation between a chemical reaction and a reactor	5
1.3. The relation between the reactor and the manufacturing process	12
1.4. Conclusion	16
2. The path of chemical reactor development	17
2.1. The problem of the scale-up of chemical reactors	17
2.2. The modelling of chemical reactors	18
2.3. Analysis of the results of laboratory experiments	20
2.4. Experiments necessary for scale-up	21
2.5. The organization of this book.	21

PART II: GENERAL PRINCIPLES

3. Models for ideal single-phase reactors	24
3.1. Definitions of the main concepts	24
3.2. Batch and semi-batch reactors	27
3.2.1. The ideal batch reactor	27
3.2.2. The ideal semi-batch reactor	32
3.3. Continuous flow reactors	34
3.3.1. The plug flow reactor	34
3.3.2. The perfectly mixed continuous reactor	37
3.3.3. The cascade of perfectly mixed reactors	41
3.4. Selectivities in ideal single phase reactors	42
3.4.1. The concept of selectivity	42
3.4.2. The selectivity of competitive reactions	44
3.4.3. The selectivity of consecutive reactions	47
3.4.4. The selectivity of competitive-consecutive reactions	49
3.5. Homogeneous reversible reactions	50
3.5.1. Reversible reactions in batch or plug flow reactors	51
3.5.2. Reversible reactions in continuous perfectly mixed reactors	52
3.6. Conclusions on ideal single-phase reactor models	54
4. The physical contacting of reactants	56
4.1. How do molecules get together?	56
4.2. Mixing in single-phase systems	57
4.2.1. Some general aspects of mixing	57
4.2.2. Mixing in turbulent flow	61
4.2.2.1. Some technical aspects	61
4.2.2.2. Macro-mixing	64
4.2.2.3. Turbulent micro-mixing	65
4.2.2.4. Turbulent meso-mixing	68
4.2.2.5. Conclusions and recommendations for turbulent mixing	71
4.2.3. Mixing in laminar flow	71
4.2.3.1. Some technical aspects	71
4.2.3.2. Laminar micro- or meso-mixing	73
4.2.3.3. Conclusions and recommendations for laminar mixing	79

4.3. Reactor configurations for multi-phase systems	80
4.4. Principles of mass transfer between two phases	83
4.5. Mass transfer in solid/fluid systems	87
4.5.1. Solid/fluid dispersions	87
4.5.1.1. <i>Fixed or packed beds</i>	87
4.5.1.2. <i>Small particles moving through fluids by gravity</i>	89
4.5.1.3. <i>Solid particles suspended in stirred liquids</i>	91
4.5.1.4. <i>Fluidized and entrained beds</i>	93
4.5.1.5. <i>Continuous co- and countercurrent solid/fluid contacting</i>	96
4.5.2. Continuous solid and fluid phases	98
4.6. Mass transfer in fluid/fluid systems	98
4.6.1. Dispersions of gases in liquids	98
4.6.1.1. <i>Some general aspects of bubble behaviour</i>	98
4.6.1.2. <i>Bubble columns</i>	99
4.6.1.3. <i>Stirred gas/liquid contactors</i>	106
4.6.1.4. <i>Loop reactors</i>	108
4.6.1.5. <i>Gas/liquid cyclones and centrifuges</i>	109
4.6.2. Dispersions of liquids in gases	110
4.6.2.1. <i>Spray towers</i>	110
4.6.2.2. <i>Spray cyclones</i>	112
4.6.3. Gas/liquid contacting in parallel flow	112
4.6.3.1. <i>Wetted wall columns, or falling film reactors</i>	112
4.6.3.2. <i>Packed columns</i>	114
4.6.4. Dispersions of liquids in liquids	114
4.6.4.1. <i>Technical aspects</i>	114
4.6.4.2. <i>Stirred liquid/liquid contactors</i>	115
4.6.4.3. <i>Agitated columns</i>	115
4.7. Mass transfer in three phase systems	116
4.7.1. Possible three phase systems	116
4.7.2. Solid/liquid/gas systems	117
4.7.2.1. <i>The most important configurations</i>	117
4.7.2.2. <i>Slurry reactors</i>	118
4.7.2.3. <i>Three phase packed bed reactors</i>	120
4.8. Conclusions on the physical contacting of reactants	122
5. The interaction of chemical reactions and physical transport phenomena	123
5.1. Introduction	123
5.2. Mixing and reaction in single-phase systems	126
5.2.1. Mixing and reaction times	126
5.2.2. Meso-mixing and reaction in turbulent flow	128
5.2.3. Micro- or meso-mixing and reaction in laminar flow	131
5.3. Mass transfer and chemical reaction in series	138
5.3.1. Separation of mass transfer from chemical reaction	138
5.3.2. Mass transfer and reaction at a solid surface	138
5.3.2.1. <i>A catalytic reaction at a massive solid surface</i>	138
5.3.2.2. <i>The chemical conversion of a massive solid</i>	139
5.3.2.3. <i>Mutually linked heat and mass transfer</i>	142
5.3.3. Mass transfer in one phase and reaction in the other phase	143
5.3.4. Mass transfer followed by reaction in a large bulk	143
5.3.4.1. <i>The steady state</i>	143
5.3.4.2. <i>Non-steady state chemical dissolution</i>	144

5.3.5. The influence of mass transfer on selectivity	146
5.3.6. Heat transfer in gas/liquid systems	146
5.4. Simultaneous diffusion and reaction in two phase systems	147
5.4.1. The general problem	147
5.4.2. Mass transfer accompanied by rapid reaction	150
5.4.2.1. <i>Chemically enhanced absorption or extraction</i>	150
5.4.2.2. <i>Selectivities in chemically enhanced absorption or extraction</i>	155
5.4.3. Diffusion and reaction in porous solids	157
5.4.3.1. <i>Effectiveness factors of porous catalysts</i>	157
5.4.3.2. <i>Selectivities in porous catalysts</i>	160
5.4.3.3. <i>Chemical conversion of porous solids</i>	160
5.4.4. Diffusion and reaction in fluidized beds	163
5.5. Mass transfer and chemical reaction in three-phase systems	164
5.5.1. The general problem	164
5.5.2. Mass transfer at two interfaces without interaction, accompanied by chemical reaction	164
5.5.3. Mass transfer and reaction at two interfaces, with interaction	167
5.6. Conclusions on the interactions of chemical reactions and physical transport phenomena	168
6. The formation of another phase in the reactor	170
6.1. Introduction	170
6.2. The effect of phase formation on process rates	171
6.2.1. Reversible reactions with phase formation	171
6.2.2. Influence of phase formation on mass transfer	172
6.2.2.1. <i>The effects of gas bubbling from a solution</i>	172
6.2.2.2. <i>The effects of the precipitation of solids</i>	173
6.2.3. The formation of another reaction phase	173
6.3. The formation of solid reaction products	174
6.3.1. A brief overview	174
6.3.2. The precipitation of a solid product from a liquid	175
6.3.2.1. <i>The influence of mixing on nucleation and crystal growth</i>	176
6.3.2.2. <i>Aggregation</i>	178
6.3.2.3. <i>Agglomeration: simultaneous aggregation and surface growth</i>	182
6.3.2.4. <i>Precipitation without primary nucleation</i>	183
6.3.3. The formation of a solid product from a gas	184
6.3.4. The conversion of a solid reactant into a solid reaction product	185
6.3.4.1. <i>Solid/solid reactions</i>	185
6.3.4.2. <i>Solid/gas/solid reactions</i>	187
6.3.4.3. <i>Solid/liquid/solid reactions</i>	191
6.4. Conclusions on the formation of another phase	192
7. Integral isothermal reactor models	193
7.1. Batch and semi-batch reactors	193
7.1.1. True batch reactors	193
7.1.2. Single-phase semi-batch reactors	193
7.1.3. Two-phase semi-batch reactors	194

7.2. Continuous reactors with one process stream	197
7.2.1. Residence time distribution in continuous reactors	197
7.2.1.1. <i>The concepts of residence time distribution and backmixing</i>	197
7.2.1.2. <i>Segregation versus micromixing</i>	199
7.2.1.3. <i>Backmixing: residence time distribution and micro-mixing</i>	201
7.2.1.4. <i>The influence of backmixing on selectivity</i>	203
7.2.2. Reactors with mainly axial flow	203
7.2.2.1. <i>Reactors with axial flow and axial mixing</i>	203
7.2.2.2. <i>Tubular reactors</i>	207
7.2.2.3. <i>Packed bed reactors</i>	207
7.2.2.4. <i>Fluidized bed reactors</i>	208
7.2.3. Reactors with predominant overall circulation	210
7.2.3.1. <i>Macro mixing in stirred tank reactors</i>	210
7.2.3.2. <i>Complex "black box" models</i>	211
7.3. Continuous reactors with two process streams	213
7.3.1. Various ways of contacting two process streams	213
7.3.2. Reactors with two well mixed phases	214
7.3.3. Reactors with one well mixed phase and one in unidirectional flow	216
7.3.4. Reactors with two process streams in cocurrent flow	217
7.3.5. Reactors with two process streams in countercurrent flow	217
7.3.6. Reactors with two process streams in cross flow	219
7.4. Conclusions on integral isothermal reactor models	220
8. Enthalpy management and temperature control	221
8.1. Introduction	221
8.2. Interphase heat transfer	223
8.3. Temperature control in an isothermal continuous stirred tank reactor	226
8.3.1. The adiabatic CSTR	226
8.3.2. The cooled isothermal CSTR	228
8.3.3. The isothermal CSTR with an evaporating solvent	230
8.4. Temperature control in reactors with gradients	231
8.4.1. Isothermal reactors that are not well mixed	231
8.4.2. Tubular reactors with axial temperature gradients	231
8.4.3. Tubular reactors with both axial and radial temperature gradients	232
8.4.4. Temperature control in semi-batch reactors	235
8.5. Endothermic processes	236
8.6. Conclusions on enthalpy management and temperature control	237
9. The selection of a reactor type	238
9.1. Introduction	238
9.2. The choice of the phase or phases that are present in the reactor	239
9.3. Selection of a reactor configuration	241
9.4. Selection of the operation mode	244
9.5. The influence of enthalpy management and temperature control	245
9.6. Conclusions on reactor type selection	246

PART III: APPLICATIONS

10. Reactors for organic chemical syntheses	247
10.1. Introduction	247
10.2. Single phase processes	249
10.2.1. Syntheses with complete conversion: the semi-batch reactor	249
10.2.2. Syntheses aimed at incomplete conversion	253
10.3. Two-phase organic processes	254
10.3.1. Gas/liquid processes	254
10.3.2. Liquid/liquid processes	259
10.3.3. Solid/liquid processes	259
10.4. Conclusion	261
11. Reactors for conversion or formation of inorganic solids	262
11.1. Introduction	262
11.2. Low-temperature solid/liquid processes	262
11.2.1. Chemical dissolution of solid reactants	262
11.2.2. Precipitation reactors	266
11.2.3. Reactors for simultaneous dissolution and precipitation	268
11.2.4. Electrodeposition	269
11.3. High-temperature solid/gas and solid/solid processes	270
11.3.1. Various types of processes	270
11.3.2. Conversion of a solid with a gas into a solid product	271
11.3.3. The precipitation of a solid from a gas	273
11.4. Conclusion	274
12. Reactors for heterogeneous catalysis	275
12.1. The design of solid catalysts in relation to reactor types	275
12.2. Reactors for catalytic gas phase processes	278
12.3. Gas/liquid/solid processes	282
12.4. Conclusion	285
13. Polymerization reactors	286
13.1. Essentials of polymerization	286
13.1.1. Polyaddition	286
13.1.2. Polycondensation	288
13.1.3. Copolymerization	289
13.2. Process configurations related to polymer recovery	290
13.3. Reactors for homogeneous polymerizations	291
13.3.1. The influence of micro-mixing on polymerization	291
13.3.2. The influence of residence time distribution and backmixing	293
13.3.3. Copolymerization reactors	295
13.4. Reactors for precipitation polymerization	298
13.5. Reactors for suspension polymerization	299
13.6. Reactors for emulsion polymerization	300
13.7. Reactors for polycondensation	303
13.8. Conclusion	306
14. Chemical reactors, product quality and the environment	307
14.1. The quality of chemical operations	307
14.2. A review of factors influencing selectivity	308
14.3. Product quality	309
14.4. The quality of waste products	313
14.5. Conclusion	315

Epilogue	316
Appendices to sections	318
3.3.1. The plug flow reactor: reaction mixture with varying density	318
4.5.1. Mass transfer in fluidized beds	319
5.2.3. Models for micro-mixing and reaction in laminar flow	322
5.4.2. Gas absorption accompanied by chemical reaction	326
7.3.5. Reactors with two process streams in countercurrent flow	329
List of symbols, abbreviations and units	333
Literature references and author index	339
Subject index	345

LIST OF FIGURES

<i>Figure nr.</i>	<i>Page nr.</i>	<i>Figure nr.</i>	<i>Page nr.</i>	<i>Figure nr.</i>	<i>Page nr.</i>
1.1	14	5.1	129	11.1	264
3.1	28	5.2	132	11.2	269
3.2	29	5.3	136	12.1	279
3.3	31	5.4	137	12.2	279
3.4	34	5.5	139	13.1	294
3.5	38	5.6	141	13.2	294
3.6	38	5.7	143	13.3	304
3.7	40	5.8	149	3A.1	319
3.8	41	5.9	149	3A.2	319
3.9	46	5.10	150	4A.1	321
3.10	47	5.11	152	4A.2	321
3.11	49	5.12	154	5A.1	325
3.12	50	5.13	156	5A.2	325
3.13	51	5.14	159	5A.3	327
3.14	51	5.15	162	7A.1	330
3.15	53	5.16	162	7A.2	331
3.16	53	5.17	166		
4.1	61	7.1	198		
4.2	62	7.2	199		
4.3	63	7.3	200		
4.4	66	7.4	202		
4.5	67	7.5	206		
4.6	72	7.6	210		
4.7	73	7.7	212		
4.8	88	7.8	214		
4.9	97	7.9	218		
4.10	100	8.1	227		
4.11	103	8.2	227		
4.12	109	8.3	232		
4.13	111	8.4	237		
4.14	111				
4.15	119				