

CONTENTS

Chapter 1 Classification of Solids, a Small Amount of Group Theory, and Crystal Structure

1.1	Classifications of solids by binding forces	2
1.1.1	Molecular crystals and the van der Waals forces	2
1.1.2	Ionic crystals and Born-Mayer theory	5
1.1.3	Metals and Wigner-Seitz theory	9
1.1.4	Valence crystals and Heitler-London theory	10
1.1.5	Comment on hydrogen bonded crystals	10
1.2	An introduction to group theory notation and crystal structure	12
1.2.1	Definition and simple properties of groups	12
1.2.2	Examples of solid state symmetry properties	15
1.2.3	Theorem: no fivefold symmetry	18
1.2.4	Definition of crystal structure terms and some nonderived facts about crystal structure	19
1.2.5	List of crystal systems and Bravais lattices	20
1.2.6	Schoenflies and international notation for point groups	23
1.2.7	Some typical crystal structures	25
1.2.8	Miller indices	27

Chapter 2 Lattice Vibrations and Some Thermal Properties of Matter

2.1	The Born-Oppenheimer approximation	29
2.2	One-dimensional lattices	34
2.2.1	Classical two-atom lattice with periodic boundary conditions	35
2.2.2	Classical, large, perfect monatomic lattice, and introduction to Brillouin zones	37
2.2.3	Specific heat of linear lattice	46
2.2.4	Classical diatomic lattices: optic and acoustic modes	48
2.2.5	Classical lattice with defects	53
2.2.6	Quantum mechanical linear lattice	58
2.3	Three-dimensional lattices	66
2.3.1	Direct and reciprocal lattices and pertinent relations	66
2.3.2	Quantum mechanical treatment and classical calculation of the dispersion relation	67
2.3.3	The Debye theory of specific heat	72

Chapter 3 Electrons in Periodic Potentials

3.1	Reduction to one-electron problem	83
3.1.1	The variational principle	83
3.1.2	The Hartree approximation	85
3.1.3	The Hartree-Fock approximation	89
3.1.4	Coulomb correlations and the many-electron problem	103
3.2	One-electron models	105
3.2.1	The Kronig-Penney model	105
3.2.2	The free-electron or quasi-free-electron approximation	113
3.2.3	The problem of one electron in a three-dimensional periodic potential	132
3.2.4	Effect of lattice defects on electronic states in crystals	156

Chapter 4 Magnetism, Magnons, and Magnetic Resonance

4.1	Summary of some standard topics in magnetism	164
4.1.1	Diamagnetism of the core electrons	164
4.1.2	Paramagnetism of valence electrons	165
4.1.3	Ferromagnetism and related topics	168
4.2	The Heisenberg Hamiltonian, magnons, and spin waves	176
4.2.1	Heitler-London, Hund-Mulliken, band theories, and related topics	176
4.2.2	Spin waves and magnons as predicted by the Heisenberg Hamiltonian	189
4.2.3	Behavior of equilibrium properties near a magnetic phase transition	200
4.3	Magnetic resonance and crystal field theory	214
4.3.1	Simple ideas about magnetic resonance	214
4.3.2	Spin-lattice relaxation	215
4.3.3	A classical picture of resonance	218
4.3.4	The Bloch equations	221
4.3.5	Crystal field theory and related topics	229
4.3.6	Some comments about the use of crystal field theory	238

Chapter 5 The Interaction of Electrons and Lattice Vibrations

5.1	The phonon-phonon interaction	247
5.1.1	Anharmonic terms in the Hamiltonian	247
5.1.2	Normal and umklapp processes	249
5.1.3	Comment on thermal conductivity	251
5.2	The electron-phonon interaction	253
5.2.1	Form of the Hamiltonian	253
5.2.2	Rigid ion approximation	257
5.3	Brief comments on electron-electron interactions	259

5.4	The Boltzmann equation and its use in calculating electrical conductivity	261
5.4.1	Derivation of the Boltzmann differential equation	261
5.4.2	Motivation for solving the Boltzmann differential equation	263
5.4.3	The relaxation time approximate solution of the Boltzmann equation	265
5.4.4	Scattering processes and Q details	267
5.5	A variational technique for solving the Boltzmann differential equation	268
5.6	Transport coefficients	271
5.6.1	The electrical conductivity	271
5.6.2	The Peltier coefficient	271
5.6.3	The thermal conductivity	272
5.6.4	The thermoelectric power	272
5.6.5	Kelvin's theorem	273
5.7	Behavior of transport (nonequilibrium) properties near a phase transition	273
Chapter 6 A Potpourri of Solid State Topics		
6.1	Metals and the Fermi surface	280
6.1.1	Definition of the Fermi surface	280
6.1.2	Dynamics of wave packets describing electrons	281
6.1.3	A brief summary of experiments related to the Fermi surface	283
6.1.4	Semiquantitative study of the de Haas–van Alphen effect	284
6.1.5	Something about the Fermi surface in actual metals	287
6.2	Semiconductors	289
6.2.1	Conductivity in semiconductors in the intrinsic range	290
6.2.2	Impurity semiconductors—determination of the Fermi energy by electrical neutrality and the law of mass action	293
6.2.3	Cyclotron resonance in semiconductors	295
6.3	Optical properties of solids	298
6.3.1	Macroscopic theory relation of the absorption and reflection coefficients to the real and imaginary parts of the dielectric constant	299
6.3.2	Brief discussion of the relation of absorption to microscopic details	302
6.4	Dielectric constants, polarizability, and ferroelectricity	306
6.4.1	The four types of dielectric behavior	307
6.4.2	The classical theory of electronic polarization, optical absorption, and the static dielectric constant	307
6.4.3	Ferroelectric crystals	311
6.4.4	Dielectric screening and plasma oscillations in a quasi-free electron gas	312
6.5	Defects in solids	314
6.5.1	Summary and facts about important defects	314
6.5.2	Edge and screw dislocations	316

6.5.3	Schottky and Frenkel defects	318
6.5.4	Color centers	318
6.6	Superconductivity	320
6.6.1	Some experiments associated with superconductivity	320
6.6.2	The theory of superconductivity due to F. and H. London	324
6.6.3	Superconductivity and the Josephson effects	327
6.6.4	The theory of superconductivity	332

Appendices

A	Units	357
B	Derivation of the spin-orbit term from Dirac's equation	357
C	The second quantization notation for fermions and bosons	361
D	Normal coordinates	363
E	Density matrices	366
F	Derivations of Bloch's theorem	367
G	Time-dependent perturbation theory	375
	Bibliography	377
	Index	383