

Contents

LIST OF CONTRIBUTORS	ii
PREFACE	xix

Part I. FINITE ELEMENTS—FUNDAMENTALS

Variational Procedures and Convergence of Finite-Element Methods	1
--	---

G. R. Cowper

References	11
------------	----

Isoparametric and Allied Numerically Integrated Elements—A Review

O. C. Zienkiewicz

1. Introduction	13
2. Basic Principles of Shape Function (Interpolation) Mapping	14
3. Uniqueness of Mapping	16
4. Iso-, Sub-, and Superparametric Elements	18
5. Evaluation of Element Properties in Curvilinear Coordinates	19
6. Required Accuracy of Numerical Integration	20
7. Some Useful Elements for Two- and Three-Dimensional Analysis	22
8. Degeneration of Quadrilateral or Brick Elements	26
9. Computation Efficiency of Numerical Integration	28
10. Practical Examples and Stress Computation	29
11. Shells and Plates as Limiting Cases of Three-Dimensional Analysis	31
12. Applications to Nonlinear Analysis	34
13. Concluding Remarks—Other Uses of Mapping	37
References	39

Incompatible Displacement Models

E. L. Wilson, R. L. Taylor, W. P. Doherty, and J. Ghaboussi

1. Introduction	43
2. Source of Errors	44

3. Addition of Incompatible Modes for Two-Dimensional Isoparametric Elements	45
4. Three-Dimensional Elements	51
5. Thick Shell Element	52
6. Thick Shell Examples	55
References	57

Hybrid Models

Theodore H. H. Pian

1. Introduction	59
2. Formulation of Hybrid Stress Model	60
3. Features of Hybrid Stress Model	63
4. Hybrid Displacement Models	74
5. Conclusion	76
References	76

Computer Implementation of the Finite-Element Procedure

Ernst Schrem

1. Introduction	79
2. Prerequisites	80
3. Solution Methods for the Load-Deflection Equations	83
4. Incorporation of Different Finite-Element Types	104
5. Modular Design	106
6. Problem Description and Representation of the Results	112
References	117

Part II. CRITICAL REVIEW OF GENERAL-PURPOSE STRUCTURAL MECHANICS PROGRAMS

Review of the ASKA Program

P. Meijers

1. Introduction	123
2. General Information	124
3. Element Library	125
4. Preparation of an ASKA Job	131
5. Special Features in ASKA	134
6. Dynamic Analysis	137
7. Problems Solved with ASKA	138
8. Concluding Remarks	147
References	148

A Critical View of NASTRAN*James L. Tocher and Ervin D. Herness*

1. Introduction	151
2. History of NASTRAN	151
3. Boeing Evaluation Project	152
4. Analytic Capability	153
5. Element Technology	158
6. Numerical Methods	161
7. Ease of Use	164
8. Problem Size	165
9. Performance	166
10. Design Criteria	167
11. Maintainability	168
12. Conclusion	168
Appendix A. Future NASTRAN Developments	169
Appendix B. Examples of Analysis	170
References	173

The DAISY Code*D. N. Yates, W. W. Sable, and T. J. Vinson*

1. Introduction	176
2. Some Features of DAISY	178
3. Lockheed's Development of DAISY	182
4. Some Examples of Problems Solved with DAISY	197
5. Future Plans	209

An Evaluation of the STARDYNE System*John Dainora*

1. Introduction	211
2. STARDYNE	211
3. Examples of Problems Solved	216
4. Performance	224
5. Conclusions	226

Analysis and Design Capabilities of STRUDL Program*S. L. Chu*

1. Introduction	229
2. Definition of the Problem	230
3. Analysis Facilities	231
4. Design Facilities	235
5. Save/Restore and Graphic/Output	237

6. Maintenance, Improvements, and Implementation	238
7. Machine Configuration	239
8. Computer Cost	239
9. Conclusion	244
References	245

Elastic-Plastic and Creep Analysis via the MARC Finite-Element Computer Program

D. J. Ayres

1. Introduction	247
2. Example 1—Plasticity Analysis	248
3. Example 2—Primary Creep Analysis	254
4. Other Examples	257
5. The Merits of MARC	263
6. Conclusions	263
References	263

Part III. FINITE DIFFERENCE/FINITE ELEMENTS—A MERGING OF FORCES

A Survey of Finite-Difference Methods for Partial Differential Equations

J. P. Wright and M. L. Baron

1. Introduction	265
2. General Discussion	267
3. Hyperbolic Systems	268
4. Parabolic Systems	271
5. Elliptic Systems	272
6. Tensor Product—Fast Fourier Transform Methods	275
7. Implicit versus Explicit Methods—Flexibility Concept	277
8. The Method of Fractional Steps	279
9. Stability and the Energy Method	283
References	286

Finite-Difference Energy Models versus Finite-Element Models: Two Variational Approaches in One Computer Program

David Bushnell

Nomenclature	292
1. Introduction	294
2. Analysis	295
3. Numerical Results	310

4. Comments on Application to Two-Dimensional Problems	325
5. Conclusions	331
Appendix	332
References	335

Comparison of Finite-Element and Finite-Difference Methods

Samuel W. Key and Raymond D. Krieg

1. Introduction	337
2. A Problem in Wave Mechanics	338
3. Early Literature	347
References	350

Incremental Stiffness Method for Finite Element Analysis of the Nonlinear Dynamic Problem

John F. McNamara and Pedro V. Marcal

1. Introduction	353
2. Review of Literature	354
3. Theoretical Considerations	355
4. Solution Procedure	357
5. Note on Solution Convergence	357
6. Computer Program	359
7. Case Studies	359
8. Discussion and Conclusions	373
References	375

The Lumped-Parameter or Bar-Node Model Approach to Thin-Shell Analysis

W. C. Schnobrich and D. A. Pecknold

1. Introduction	377
2. Shallow Shell Equations	379
3. Lumped-Parameter Model	381
4. Boundary Conditions	386
5. Selection of Proper Model	390
6. Conclusions	398
Appendix A. Lumped-Parameter Element Stiffness Matrices	399
References	401

Part IV. LARGE INTERACTIVE DATA BASES

Design Philosophy of Large Interactive Systems

Steven J. Fenves

1. Introduction	404
2. Components of Data Base	405

3. Program Design	407
4. Data Structure Design	409
5. Control System Design	411
6. Who Will Do It	412
7. Conclusions	413
References	414

Integrated Design of Tanker Structures

Johannes Moe

1. Introduction	415
2. Presentation of the Structural Problem	416
3. Design Procedure	419
4. Synthesis	424
5. Software System	428
6. Concluding Remarks	430
Appendix I. Automated Design and Optimization Programs	430
Appendix II. Example of BOSS Session	433
References	436

The STORE Project (The Structures Oriented Exchange)

J. M. McCormick, M. L. Baron, and N. Perrone

1. Introduction	439
2. Basic Concepts of STORE	441
3. Description of the STORE System	443
4. Use of the STORE System	446
5. Costs	450
6. Distinguishing Characteristics of the STORE System	451
7. Illustrative Example—Typical STORE Program Documentation	452
8. Present Status, Conclusions, and Recommendations	457
Appendix A. List of Programs in Project STORE	457
References	458

Part V. NEW CAPABILITIES FOR COMPUTER-BASED ANALYSIS

Symbolic Computing

Andrew Ka-Ching Wong

1. Introduction	459
2. Organization of Data and Data Processors	460
3. The Role of Symbolic Computation in Mechanics	466
4. Discussion and Conclusion	475
References	476

A Review of the Capabilities and Limitations of Parallel and Pipeline Computers*William R. Graham*

1. Introduction	479
2. The Parallel Computer	480
3. The Pipeline Processor	481
4. Parallel and Pipeline	483
5. Parallel and Pipeline Execution Times	484
6. Parallel versus Pipeline: Efficiency	488
7. Languages for the Parallel and Pipeline Computers	490
8. Application Programming	491
9. Performance on Large Problems	492
10. Conclusion	494
References	495

Equation-Solving Algorithms for the Finite-Element Method*Bruce M. Irons and David K. Y. Kan*

1. Introduction	497
2. Types of Record Encountered	497
3. Principal Types of Organization	498
4. Gaussian Reduction	501
5. Error Diagnostics	502
6. The Conjugate Gradient Algorithm	503
7. The Alternating-Direction Approach	508
8. Multivector Iteration	509
9. Conclusions	510
Appendix I. The Prefront with Variable Numbers of Degrees of Freedom at Different Nodes	510
Appendix II. Avoidance of Zeros within the Front	511
References	511

FLING—A FORTRAN Language for Interactive Graphics*W. J. Batdorf and S. S. Kapur*

1. Introduction	513
2. Basic Graphic Subroutines	516
3. Example Problems	523
Appendix A. IBM 360 Interface Package	538

Part VI. NUMERICAL METHODS FOR A CHANGING TECHNOLOGY**Trends and Directions in the Applications of Numerical Analysis***Richard H. Gallagher*

1. Introduction	543
2. Alternative Variational Principles	544
3. Constraint Equation Procedures	547
4. Interdisciplinary Applications	549
5. Concluding Remarks	552
References	554

Vehicle Crashworthiness

S. P. Desjardins

1. Introduction	557
2. Crash Environment	558
3. Injury Causes and Patterns	564
4. Crash Survival	569
5. Conclusions	583
References	584

Computational Fracture Mechanics

J. R. Rice and D. M. Tracey

1. Introduction	585
2. Numerical Determination of Elastic Stress Intensity Factors (Two-Dimensional Problems)	587
3. Crack Tip Plasticity	592
4. Singular Finite-Element Formulation and Results	599
5. Three-Dimensional Problems	614
6. Micromechanics and Development of Fracture Criteria	616
7. Conclusion	620
References	621

Biomechanics

George Bugliarello

1. Mechanics in Living Systems	625
2. The Tasks of Biomechanics	626
3. A Function-Oriented Taxonomy of the Mechanics of Living Systems	627
4. Characteristics of Biomechanics Problems	631
5. The Role of Numerical Solutions in Biomechanics	633
6. State of the Art Examples of Numerical Solutions in Biomechanics	634
7. Conclusions: Artimechanics, Physimechanics, and Biomechanics	640
References	641

The Computer in Ship Structure Design

H. A. Kamel, D. Liu, and E. I. White

1. Introduction	643
2. Current and Future Developments in Computer Hardware	644
3. Current and Future Developments in Structural Analysis Software	645
4. Relationship between the Computer and the Engineer	645
5. Future Trends in Ship Structure Analysis	646
6. Problems and Useful Techniques in Interactive Analysis	647
7. The Local Analysis Procedure	648
8. The Reduced Substructure Technique (RESS)	649
9. Automatic Data Generation and Interpretation of Results	652
10. Data Banks	656
11. Multistep Solutions	657
12. Dynamic Modeling Using Compatible Finite Elements of Different Order	658
13. The Problem of Storage in a Small Computer	660
14. Method of Additional Constraints (MAC)	661
15. Variations on the Gauss-Seidel Iterative Technique	664
16. Conclusion	667
Appendix A. Nomenclature	667
References	668
AUTHOR INDEX	669