

Contents

LIST OF CONTRIBUTORS	xiii
PREFACE	xv
ACKNOWLEDGMENTS	xvii

PART I/**Time Series and Stochastic Processes**

Two-Dimensional Random Fields

P. Bickel and M. Rosenblatt

Preliminaries	3
Details of the Proof of Theorem 1	6
References	15

Concepts of Consistency in Spectral Estimation for Multivariate Time Series

F. Eicker

1. Introductory Remarks	17
2. Should One Estimate the Spectral Distribution Function or Its Derivative?	18
3. Estimation of the Spectral Distribution Function F for a Multivariate Stationary Random Sequence	25
Appendix	28
References	29

Non-Anticipative Canonical Representations of Equivalent Gaussian Processes

G. Kallianpur

1. Introduction	31
2. The General Form of the Non-Anticipative Representation	31
3. A Derivation Using Martingale Theory	36
4. Concluding Remarks	43
References	43

Abstract Martingales and Ergodic Theory*M. M. Rao*

Introduction	45
1. The Problem	46
2. Martingale Formulation	47
3. An Operator Theoretic Approach	50
4. A Maximal Inequality	57
5. Final Remarks	59
References	60

On the Modelling and Estimation of Communication Channels*W. L. Root*

1. Introduction and Preliminary Discussion	61
2. Classes of Channels and Representations	64
3. Estimation of Parameters in a Linear Model	68
4. Channel Identification	73
5. Remarks	77
References	78

Innovation and Nonanticipative Processes*Yu. A. Rozanov*

1. Innovation Processes and Regularity	79
2. Canonical Representations and Fully Submitted Processes	85
References	92

PART II/Distribution Theory and Inference**Methods for Assessing Multivariate Normality***D. F. Andrews, R. Gnanadesikan, and J. L. Warner*

1. Introduction	95
2. Univariate Techniques for Evaluating Marginal Normality	97
3. Multivariate Techniques for Evaluating Joint Normality	98
4. Tests Based on Unidimensional Views of Multivariate Data	101
5. Examples	103
6. Concluding Remarks	115
References	115

Asymptotic Expansions for the Distributions of Characteristic**Roots When the Parameter Matrix Has Several Multiple Roots***A. K. Chattopadhyay and K. C. S. Pillai*

1. Introduction	117
2. The Maximization Procedures	118
3. Asymptotic Expansion for the Distribution of the Latent Roots of the Estimated Covariance Matrix—Several Multiple Population Roots	120
4. Asymptotic Expansion for the Distribution of the Latent Roots of $S_1 S_2^{-1}$ —Several Multiple Population Roots	123

5. Asymptotic Expansion for Manova—Several Multiple Population Roots	124
6. Asymptotic Expansion for Canonical Correlation—Several Multiple Population Roots	125
7. Complex Analogues of Previous Results	126
8. Remarks	127
References	127

Aspects of the Multinomial Logit Model

A. P. Dempster

1. The General Logit Model	129
2. Properties of the Likelihood	131
3. Comment	140
Appendix: The Beaton Sweep	141
References	142

Inference and Redundant Parameters

D. A. S. Fraser

1. Introduction	143
2. The Probability Space Model	145
3. Measure Factorizations	147
4. If the Inner Parameter Become Known	149
5. A Redundant Parameter	151
6. The Multivariate Model	152
7. The Bayesian Right Invariant	155
References	156

The Variance Information Manifold and the Functions on It

A. T. James

1. The Variance Information Manifold and Its Boundary	157
2. The Bivariate Case	158
3. The Multinormal Distribution with Singular Information Matrix	159
4. Derivation via the Distribution of Linear Functions	162
5. Application to the Analysis of Experimental Designs	162
6. Representations as the Marginal Distribution of a Nonsingular Distribution	163
7. Decomposition of a Multinormal Distribution	163
8. Invariant Metric	165
9. Geodesic Distance between Two Matrices	166
10. Zonal Polynomials	167
References	169

Stopping Time in Sequential Samples from Multivariate Exponential Families

R. A. Wijsman

1. Introduction	171
2. The Main Theorem	173
3. Application to Examples 1.1 and 1.2	178
References	179

PART III/Characteristic Functions and Characterizations**An Isomorphism Method for the Study of I_0^n**
Roger Cuppens

1. Introduction	183
2. Definitions and Notations	185
3. Isomorphism Method	186
4. Applications in the General Case	187
5. Applications to a Finite Independent Set	189
6. Applications to An Enumerable Independent Set	191
7. Finite Products of Poisson Laws	193
8. α -Decompositions	195
References	196

A Characterization of the Multivariate Geometric Distribution
Eugene Lukacs

1. Introduction	199
2. A Regression Property	199
3. The Characterization Theorem	200
4. Derivation of the Differential Equations	201
5. Completion of the Proof of Sufficiency	203
6. Proof of the Necessity	207
References	208

**On Infinitely Decomposable Probability Distributions, and
Helical Varieties in Hilbert Space***P. Masani*

1. Introduction	209
2. The Canonical Association of Helical Varieties with Infinitely Decomposable Distributions	210
3. A Hilbert Space Proof of the Lévy-Khinchine Theorem for \mathbb{R}^q	214
4. Operator-Measure Theoretic Treatment	216
5. On Probability and Hilbert Spaces	220
6. Bibliographical and Concluding Remarks	221
References	222

**Limit Laws for Sequences of Normed Sums Satisfying
Some Stability Conditions***K. Urbanik*

References	237
------------	-----

PART IV/Design and Analysis of Experiments**The Analysis of Time Series Collected in an Experimental Design***David R. Brillinger*

1. Introduction	241
2. The Finite Fourier Transform	242
3. The Fixed Effects Model	245
4. The Random Effects Model	248
5. The Point Process Case	253
Appendix	255
References	256

Max-Min Designs in the Analysis of Variance*R. H. Farrell*

1. Introduction and Max-Min Designs	257
2. A Matrix Inequality and Regular Designs	260
References	261

Analysis of Covariance Structures*K. G. Jöreskog*

1. Introduction	263
2. General Results	264
3. Applications	271
References	284

Optimum Designs for Fitting Biased Multiresponse Surfaces*J. Kiefer*

1. Introduction	287
2. Formulation of Box and Draper	289
3. Minimizing $V + B$	292
4. An Illustrative Example	294
5. Other Comments	296
References	297

Asymptotic Properties of Some Sequential Nonparametric**Estimators in Some Multivariate Linear Models***Pranab Kumar Sen and Malay Ghosh*

1. Introduction	299
2. The Problems	300
3. Preliminary Notions and Basic Assumptions	300
4. Asymptotic Properties of Robust Sequential Point Estimators of (α, β)	303
5. Bounded Length (Sequential) Confidence Bands for θ	311
References	315

PART V/Classification, Modelling, and Reliability**Availability Theory for Multicomponent Systems***Richard E. Barlow and Frank Proschan*

Introduction and Summary	319
1. Preliminaries	320
2. Average System Up Time: Almost Sure Results	322
3. Asymptotic Distributions	327
4. Cost of Repair	333
References	334

Some Measures for Discriminating between Normal**Multivariate Distributions with Unequal Covariance Matrices***Herman Chernoff*

1. Summary and Introduction	337
2. The Measure S	338
3. The Measure T	339
4. The Kullback–Leibler Information Numbers	343
References	344

Correlation and Affinity in Gaussian Cases*Kameo Matusita*

1. Introduction	345
2. Correlation Coefficient and ρ_1, ρ_{11}	346
3. Canonical Correlation and ρ_1 or ρ_{11}	347
References	349

Identification of the Structure of Multivariable Stochastic Systems*M. B. Priestley, T. Subba Rao, and H. Tong*

1. Introduction	351
2. Two Results in Principal Components Analysis	353
3. Multivariable Linear Systems	356
4. Identification of the System Structure	358
5. Reduction of the Dimension of the Output Vector	359
6. Reduction of the Dimension of the Input Vector	361
7. Practical Problems	363
8. Tests of Significance of Eigenvalues	363
9. Testing the Equality of $\lambda_{k+1}(\omega) = \lambda_{k+2}(\omega) = \dots \lambda_p(\omega) = \lambda(\omega)$	366
10. Asymptotic Theory for the Distribution of Eigenvalues	367
References	368

**An Information Function Approach to Dimensionality
Analysis and Curved Manifold Clustering***J. N. Srivastava*

1. Introduction	369
2. Entropy in the Discrete and Continuous Cases	371
3. Uncertainty and Dimesionality	374
4. Some Auxiliary Techniques	377
5. Monte Carlo Studies	379
References	382

**Nonlinear Iterative Partial Least Squares (NIPALS) Modelling: Some
Current Developments***Herman Wold*

1. Introduction and Summary	383
2. What is NIPALS Modelling?	384
3. Low Information versus High Information Modelling	387
4. Causal Flow Models in Econometrics and the Behavioural Sciences	390
5. Case Studies in NIPALS Modelling	399
References	405

TITLES OF CONTRIBUTED PAPERS

409