

Contents

Notation

xi

Chapter 1 Introduction

1.1	What is Fluid Mechanics?	1
1.2	What Good is Fluid Mechanics?	2
1.3	Basic Ideas in Fluid Mechanics	3
1.4	Liquids and Gases	4
1.5	Properties of Fluids	5
1.6	Pressure	15
1.7	Force, Mass, and Weight	17
1.8	Units and Conversion Factors	18
1.9	Consistent Systems of Units	21
1.10	Principles versus Techniques	24
1.11	Engineering Problems	24
1.12	Summary	26

Chapter 2 Fluid Statics

2.1	The Basic Equation of Fluid Statics	30
2.2	Pressure-Depth Relationships	32
2.3	Pressure Forces on Surfaces	37
2.4	Buoyancy	44
2.5	Pressure Measurement	47
2.6	Variable Gravity	52
2.7	Pressures in Accelerated Rigid-Body Motions	53
2.8	Thin-Walled Pressure Vessels	58
2.9	More Problems in Fluid Statics	59
2.10	Summary	59

Chapter 3 The Balance Equation and the Mass Balance

3.1	The Balance Equation	69
3.2	The Mass Balance	71
3.3	Steady-State Balances	73
3.4	The Steady-State Flow, One-Dimensional Mass Balance	74
3.5	Unsteady-State Mass Balances	77
3.6	Mass Balances for Multidimensional Flows	79
3.7	Summary	80

Chapter 4 The First Law of Thermodynamics

4.1	Energy	84
4.2	Forms of Energy	85
4.3	Energy Transfer	87
4.4	The Energy Balance	89
4.5	Kinetic and Potential Energies	91
4.6	Internal Energy	93
4.7	The Work Term	95
4.8	Injection Work	96
4.9	The Enthalpy	98
4.10	Restricted Forms	99
4.11	Some Common Machines and Processes	101
4.12	Unsteady-State Systems, Accumulation	106
4.13	Less Restricted Systems	111
4.14	Other Forms of Work and Energy	116
4.15	Limitations of the First Law	120
4.16	Summary	120

Chapter 5 Bernoulli's Equation

5.1	The Energy Balance for a Steady, Incompressible Flow	127
5.2	The Friction-Heating Term	128
5.3	Zero Flow	130
5.4	The Head Form of Bernoulli's Equation	131
5.5	Diffusers and Sudden Expansions	131
5.6	Bernoulli's Equation for Gases	132
5.7	Torricelli's Equation and Its Variants	135
5.8	Bernoulli's Equation for Fluid-Flow Measurement	138
5.9	Negative Absolute Pressures: Cavitation	146
5.10	Bernoulli's Equation for Unsteady Flows	148
5.11	Summary	151

Chapter 6 Fluid Friction in One-Dimensional Flow

6.1	The Pressure-Drop Experiment	159
6.2	Reynold's Experiment	160
6.3	Laminar Flow	162
6.4	Turbulent Flow	168
6.5	The Three Friction Factors Problems	173
6.6	Some Comments about the Friction-Factor Method and Turbulent Flow	179
6.7	More Convenient Methods	179
6.8	Fitting Losses	183
6.9	Enlargements and Contractions	185
6.10	Fluid Friction in One-Directional Flow and Other Geometries	187
6.11	More Complex Problems Involving Bernoulli's Equation	191
6.12	Economic Pipe Diameter	196
6.13	Flow around Submerged Objects	202
6.14	Summary	208

Chapter 7 The Momentum Balance

7.1	Momentum	218
7.2	The Momentum Balance	220
7.3	Some Steady-Flow Applications of the Momentum Balance	224
7.4	Relative Velocities	235
7.5	Airplanes	239
7.6	The Angular-Momentum Balance	242
7.7	The Momentum Balance for Three-Dimensional Flow	244
7.8	The Navier-Stokes Equations	248
7.9	Summary	252

Chapter 8 One-Dimensional High-Velocity Gas Flow

8.1	The Speed of Sound	259
8.2	Steady, Frictionless, Adiabatic, One-Dimensional Flow of a Perfect Gas	264
8.3	Nozzle-Choking	273
8.4	Normal Shock Waves	274
8.5	Relative Velocities	277
8.6	Nozzles and Diffusers	279
8.7	Pitot Tubes for High-Velocity Gas Flow	284
8.8	High-Velocity Gas Flow with Friction, Heating, or Both	285
8.9	Summary	291

Chapter 9 Pumps, Compressors, and Turbines

9.1	Positive-Displacement Pumps	298
9.2	Centrifugal Pumps	302
9.3	Positive-Displacement Compressors	308
9.4	Rotary Compressors	313
9.5	Compressor Efficiencies	314
9.6	Fluid Engines and Turbines	316
9.7	Fluid Engine and Turbine Efficiency	320
9.8	Summary	320

Chapter 10 Potential Flow

10.1	The History of Potential Flow and Boundary Layer	324
10.2	Streamlines	326
10.3	Potential Flow	327
10.4	Irrational Flow	335
10.5	Stream Function	339
10.6	Bernoulli's Equation for Two-Dimensional, Perfect-Fluid, Irrational Flows	344
10.7	Flow around a Cylinder	345
10.8	Separation	348
10.9	Summary	350

Chapter 11 The Boundary Layer

11.1	Prandtl's Boundary-Layer Equations	353
11.2	The Laminar Boundary Layer on a Flat Plate Parallel to the Flow	354
11.3	Turbulent Boundary Layers	363
11.4	Turbulent Flow in Pipes	364
11.5	The Steady, Turbulent Boundary Layer on a Flat Plate	368
11.6	The Successes of Boundary-Layer Theory	371
11.7	Summary	373

Chapter 12 Flow through Porous Media

12.1	Fluid Friction in Porous Media	380
12.2	Two-Fluid Cocurrent Flow in Porous Media	388
12.3	Countercurrent Flow in Porous Media	391
12.4	Simple Filter Theory	393
12.5	Fluidization	396
12.6	Summary	397

Chapter 13 Model Studies, Dimensional Analysis, and Similitude

13.1	Prediction and Models	400
13.2	Dimensionless Numbers	401
13.3	Finding the Dimensionless Numbers	402
13.4	Judgment, Guesswork, and Caution	412
13.5	Summary	412

Chapter 14 Gas-Liquid Flow

14.1	Vertical, Upward Gas-Liquid Flow	414
14.2	Horizontal Gas-Liquid Flow	419
14.3	Two-Phase Flow with Boiling	421
14.4	Summary	421

Chapter 15 Non-Newtonian Fluids

15.1	The Role of Structure in Non-Newtonian Behavior	423
15.2	Measurement and Description of Non-Newtonian Fluids	424
15.3	Laminar Flow of Non-Newtonian Fluids in Circular Tubes	427
15.4	Turbulent Flow of Non-Newtonian Fluids in Pipes	430
15.5	Summary	431

Chapter 16 Turbulence

16.1	Why Study Turbulence?	434
16.2	Turbulence Measurements	435
16.3	Free and Confined Turbulent Flows	437
16.4	Turbulent Kinetic Energy	438
16.5	The Experimental and Mathematical Descriptions of Turbulent Flows	439

16.6	Reynolds Stresses	446
16.7	Turbulence Theories	449
16.8	Summary	449

Chapter 17 Surface Forces

17.1	Surface Tension and Surface Energy	451
17.2	Wetting and Contact Angle	452
17.3	The Measurement of Surface Tension	453
17.4	Interfacial Tension	455
17.5	Forces Due to Curved Surfaces	456
17.6	Some Examples of Surface-Force Effects	459
17.7	Summary	462

Appendices

A	Tables of Properties	469
B	Proof that for a Fluid at Rest the Pressure is the Same in all Directions	489
C	The Hydraulic Jump Equations	490
D	The Properties of an Ideal Gas	491
E	The Area Ratio	494
F	Normal Shock Waves	495
G	Equations for Adiabatic, Zero-Clearance, Isentropic Compressors	498
H	Proof that the Curves of Constant ϕ and the Curves of Constant ψ Are Perpendicular	499
References	501	
Answers to Selected Problems	509	
Index	511	