

# Contents

## Chapter 1 Inequalities and Completeness

|     |                                               |   |
|-----|-----------------------------------------------|---|
| 1.1 | Introduction                                  | 1 |
| 1.2 | Products which are equal to zero              | 2 |
| 1.3 | Order                                         | 3 |
| 1.4 | Absolute values. Intervals on the number line | 9 |

## Chapter 2 Analytic Geometry

|      |                                                               |    |
|------|---------------------------------------------------------------|----|
| 2.1  | Introduction                                                  | 16 |
| 2.2  | Coordinate systems. The distance formula                      | 16 |
| 2.3  | The graph of a condition. Equations for circles               | 21 |
| 2.4  | Equations of lines. Slopes, parallelism, and perpendicularity | 26 |
| 2.5  | Graphs of inequalities. And, or, and if . . . then            | 33 |
| 2.6  | Parabolas                                                     | 38 |
| 2.7  | Tangents                                                      | 43 |
| 2.8  | A shorthand for sums                                          | 49 |
| 2.9  | The induction principle and the well-ordering principle       | 51 |
| 2.10 | Solution of the area problem for parabolas                    | 57 |

## Chapter 3 Functions, Derivatives, and Integrals

|       |                                                               |     |
|-------|---------------------------------------------------------------|-----|
| 3.1   | The idea of a function                                        | 63  |
| 3.2   | The derivative of a function, intuitively considered          | 69  |
| 3.3   | Continuity and limits                                         | 75  |
| 3.4   | Theorems on limits                                            | 82  |
| 3.5   | The process of differentiation                                | 89  |
| 3.6   | The process of differentiation: roots and powers of functions | 97  |
| 3.7   | The integral of a nonnegative function                        | 102 |
| 3.8   | The derivative of the integral                                | 109 |
| 3.9   | Uniformly accelerated motion                                  | 119 |
| *3.10 | Proof of the formula for the derivative of the integral       | 124 |

## Chapter 4 Trigonometric and Exponential Functions

|     |                                                                                                                   |     |
|-----|-------------------------------------------------------------------------------------------------------------------|-----|
| 4.1 | Directed angles. Trigonometric functions of angles and numbers                                                    | 128 |
| 4.2 | The law of cosines and the addition formulas                                                                      | 135 |
| 4.3 | The derivatives of the trigonometric functions; the differences $\Delta x$ and $\Delta f$ ; the squeeze principle | 139 |

|      |                                                           |     |
|------|-----------------------------------------------------------|-----|
| 4.4  | The approximation of differences by differentials         | 148 |
| 4.5  | Composition of functions                                  | 154 |
| 4.6  | The chain rule                                            | 159 |
| 4.7  | Invertible functions. The inverse trigonometric functions | 165 |
| 4.8  | Simpson's rule. The computation of $\pi$                  | 176 |
| 4.9  | Exponentials and logarithms                               | 185 |
| 4.10 | The functions $\ln$ and $\exp$                            | 191 |
| 4.11 | Exponentials and logarithms. The existence of $e$         | 197 |

**Chapter 5 The Variation of Continuous Functions**

|     |                                                                                                   |     |
|-----|---------------------------------------------------------------------------------------------------|-----|
| 5.1 | Intervals on which a function increases, or decreases                                             | 206 |
| 5.2 | Local maxima and minima, direction of concavity, inflection points                                | 211 |
| 5.3 | The behavior of functions at infinity                                                             | 216 |
| 5.4 | The introduction of functions into geometric problems; the use of existence theorems as shortcuts | 223 |
| 5.5 | The use of functional equations as shortcuts                                                      | 232 |
| 5.6 | The completeness of $\mathbf{R}$ and the existence of maxima                                      | 238 |
| 5.7 | The mean-value theorem and the no-jump theorem                                                    | 246 |
| 5.8 | The derivative of one function with respect to another                                            | 250 |

**Chapter 6 The Technique of Integration**

|     |                                                                              |     |
|-----|------------------------------------------------------------------------------|-----|
| 6.1 | Introduction                                                                 | 254 |
| 6.2 | Independent variables and indefinite integrals                               | 255 |
| 6.3 | Integrals leading to the logarithm and the inverse secant. Algebraic devices | 265 |
| 6.4 | Integration by parts                                                         | 273 |
| 6.5 | Integration of powers of trigonometric functions                             | 278 |
| 6.6 | Integration by substitution                                                  | 284 |
| 6.7 | Algebraic substitutions                                                      | 291 |
| 6.8 | Algebraic devices: completing the square and partial fractions               | 297 |

**Chapter 7 The Definite Integral**

|      |                                                                |     |
|------|----------------------------------------------------------------|-----|
| 7.1  | The problem of arc length                                      | 303 |
| 7.2  | The definite integral, defined as a limit of sample sums       | 308 |
| 7.3  | The calculation of volumes, by the method of disks             | 315 |
| 7.4  | The general method of cross sections, and the method of shells | 321 |
| 7.5  | The area of a surface of revolution                            | 327 |
| 7.6  | Moments and centroids. The theorems of Pappus                  | 335 |
| 7.7  | Improper integrals                                             | 344 |
| *7.8 | The integrability of continuous functions                      | 350 |

**Chapter 8 The Conic Sections**

|     |                                                             |     |
|-----|-------------------------------------------------------------|-----|
| 8.1 | Translation of axes                                         | 356 |
| 8.2 | The ellipse                                                 | 360 |
| 8.3 | The hyperbola                                               | 366 |
| 8.4 | The general equation of the second degree. Rotation of axes | 372 |

**Chapter 9 Paths and Vectors in a Plane**

|                                                                             |     |
|-----------------------------------------------------------------------------|-----|
| 9.1 Motion of a particle in a plane . . . . .                               | 381 |
| 9.2 The parametric mean-value theorem; l'Hôpital's rule . . . . .           | 385 |
| 9.3 Other forms of l'Hôpital's rule . . . . .                               | 393 |
| 9.4 Polar coordinates . . . . .                                             | 397 |
| 9.5 Areas in polar coordinates . . . . .                                    | 402 |
| 9.6 The length of a path . . . . .                                          | 405 |
| 9.7 Vectors in a plane . . . . .                                            | 409 |
| 9.8 Free vectors . . . . .                                                  | 415 |
| 9.9 Velocity, acceleration, and curvature . . . . .                         | 422 |
| 9.10 Concluding remarks on vector spaces and inner product spaces . . . . . | 430 |

**Chapter 10 Infinite Series**

|                                                                                           |     |
|-------------------------------------------------------------------------------------------|-----|
| 10.1 Limits of sequences . . . . .                                                        | 431 |
| 10.2 Infinite series. Convergence. Comparison tests . . . . .                             | 437 |
| 10.3 Absolute convergence. Alternating series . . . . .                                   | 445 |
| 10.4 Estimates of remainders . . . . .                                                    | 448 |
| 10.5 Termwise integration of series. Power series for $\tan^{-1}$ and $\ln$ . . . . .     | 453 |
| 10.6 The ratio test for absolute convergence. Applications to power series . . . . .      | 457 |
| 10.7 Power series for $\exp$ , $\sin$ , and $\cos$ . . . . .                              | 463 |
| 10.8 The binomial series . . . . .                                                        | 468 |
| 10.9 Taylor series . . . . .                                                              | 473 |
| 10.10 Taylor's theorem. Estimates of remainders . . . . .                                 | 477 |
| 10.11 The complex number system . . . . .                                                 | 479 |
| 10.12 Sequences and series of complex numbers. The complex exponential function . . . . . | 484 |
| 10.13 De Moivre's theorem . . . . .                                                       | 489 |
| *10.14 The radius of convergence. Differentiation of complex power series . . . . .       | 493 |
| *10.15 Integration and differentiation of real power series . . . . .                     | 499 |

|                                                                   |     |
|-------------------------------------------------------------------|-----|
| <b>Appendix A The Shorthand of Logic and Set Theory</b> . . . . . | 509 |
|-------------------------------------------------------------------|-----|

|                                                                           |     |
|---------------------------------------------------------------------------|-----|
| <b>Appendix B Algebraic Operations with Limits of Functions</b> . . . . . | 512 |
|---------------------------------------------------------------------------|-----|

|                                                                           |     |
|---------------------------------------------------------------------------|-----|
| <b>Appendix C Algebraic Operations with Limits of Sequences</b> . . . . . | 517 |
|---------------------------------------------------------------------------|-----|

|                                                                                             |     |
|---------------------------------------------------------------------------------------------|-----|
| <b>Appendix D The Error in the Approximation <math>\Delta f \approx df</math></b> . . . . . | 519 |
|---------------------------------------------------------------------------------------------|-----|

|                                                                   |     |
|-------------------------------------------------------------------|-----|
| <b>Appendix E The Continuity of Composite Functions</b> . . . . . | 522 |
|-------------------------------------------------------------------|-----|

|                                                         |     |
|---------------------------------------------------------|-----|
| <b>Appendix F The Error in Simpson's Rule</b> . . . . . | 524 |
|---------------------------------------------------------|-----|

|                                                          |     |
|----------------------------------------------------------|-----|
| <b>Appendix G The Idea of a Measurable Set</b> . . . . . | 527 |
|----------------------------------------------------------|-----|

|                                                                   |     |
|-------------------------------------------------------------------|-----|
| <b>Appendix H   Proof of the Northeast Theorem</b>                | 529 |
| <b>Appendix I   Proof of the Formula for Path Length</b>          | 533 |
| <b>Appendix J   A Method for Constructing the Complex Numbers</b> | 535 |
| <b>Selected Answers</b>                                           | 539 |
| <b>Index</b>                                                      | 559 |