

Contents

<i>Preface</i>	iv
1. Mechatronic Systems	1
1. Introduction	1
2. Mechatronic System Components	2
2.1 Mechanical Elements	2
2.2 Sensors	2
2.3 Actuators	3
2.4 Electrical and Electronic Components	3
2.5 Control Hardware	3
2.6 Information Systems	3
2.7 Mechatronic Areas of Expertise	3
3. Mechatronic Design Methodologies	4
3.1 Multidisciplinary Systems	5
3.2 Concurrent Engineering	5
3.3 Mechatronic Design Process	5
3.4 VDI 2206 Standard	6
3.5 Alternative Design and Integration Process	7
4. System Modeling and Simulation	8
4.1 Model-based System Design	9
4.2 Model-based Control Design	9
4.3 Hardware-in-the-Loop Simulations	10
5. Case Study – DDR Mobile Robot	11
5.1 Control System Design Methodology	11
5.2 Mobile Robot Modeling and Simulation	12
5.3 Robot Control Algorithms	13
5.4 Graphical 3D Model and Animation	14
5.5 Real-Time HiL Simulation	14
6. Conclusions	15
References	16
2. Industrial Automation and Control	17
1. Introduction	17
2. Automation Technologies	18
2.1 Automation Pyramid	18
2.2 Automation Levels in Manufacturing Industries	19

2.3	Automation Levels in Processes Industries	19
2.4	Operational Technologies	20
2.5	Information Technologies	21
3.	Industrial Control Systems	22
3.1	Feedback Regulatory Control and Servo-Control	23
3.2	Discrete Event Systems and Sequential Logic Control	24
4.	Control Systems Design	24
4.1	System Design	25
4.2	System Implementation	26
5.	Control Software Development	26
5.1	Concurrent Engineering	27
5.2	Safety Considerations	28
6.	Case Study	29
7.	Conclusions	31
	References	32
3.	Linear Systems Analysis and Modeling	33
1.	Introduction	33
2.	Signals and Systems	34
2.1	Signal Representation and Classification	34
2.2	Systems Classifications and Properties	35
3.	Continuous Time Linear Systems	38
3.1	Ordinary Differential Equations	38
4.	Laplace Transform	39
4.1	Complex Exponentials	40
4.2	Introduction to Laplace Transform	41
4.3	Transfer Functions	42
4.4	Impulse Response of First-Order Systems	43
4.5	Impulse Response of Second-Order Systems	44
4.6	Partial Fractions Expansion Method	46
4.7	Step Response of First-Order Systems	47
4.8	Step Response of Second-Order Systems	49
5.	Frequency Response Analysis	51
5.1	Fourier Transform	51
5.2	Bode Plot of First-Order Systems	52
5.3	Bode Plot of Second-Order Systems	53
6.	Modeling of Physical Systems	54
6.1	Modeling First-Order Systems	54
6.2	Modeling of Second-Order Systems	55
6.3	Modeling of a DC Motor	57
7.	Conclusions	58
	References	59

4. Discretization of Linear Systems	60
1. Introduction	60
2. Discrete-Time Signals and Systems	61
2.1 Impulse Response	61
2.2 Difference Equations	63
3. Introduction to Z-Transform	64
3.1 Discrete Transfer Functions	65
4. Euler Backward Differences	68
4.1 BEM Digitalization in Time-Domain	68
4.2 BEM Digitalization in Frequency Domain	72
5. Bilinear Transform	74
5.1 BLT Mapping	74
5.2 BLT Conversion Procedure	75
5.3 Hybrid Transformation	76
5.4 Comparison of Discretization Methods	78
6. Practical Digital Filtering	80
6.1 Finite and Infinite Impulse Response Filters	80
6.2 Basic Digital Filter Design	81
7. Conclusions	85
References	86
5. System Identification	87
1. Introduction	87
2. System Identification Problem	88
3. Continuous-Time Identification	88
3.1 Identification of First-Order Systems	89
3.2 Comparison of First-Order Identification Methods	92
3.3 Identification of Second-Order Underdamped Systems	93
4. Discrete-Time Identification	96
4.1 PRBS Experiment	97
4.2 Model Approximation by Minimum Square Error Method	100
4.3 Model Validation by Regression Analysis	102
5. Conclusions	104
References	105
6. State Space Modeling	107
1. Introduction	107
2. State Space Model Formulation	107
2.1 Definitions	108
2.2 State Space Equations	108
2.3 State Space to Transfer Function	113
3. State Space Equation Solution	115
3.1 Solutions to the State Space Equation	115
3.2 State Transition Matrix	117

4. Controllability and Observability	125
4.1 Controllability	126
4.2 Observability	127
4.3 Similarity Transformation and Canonical Forms	127
5. State Space Models in Discrete Time	132
5.1 Discretization of a State Space System	132
5.2 Discretization with Bilinear Transform	134
6. Conclusions	137
References	138
7. PID Control	139
1. Introduction	139
2. Fundamentals of Proportional and Integral Control	140
2.1 Open Loop Control	140
2.2 Closed Loop Control	141
3. PI Controller for First-Order Systems	142
3.1 Direct Synthesis Method	142
3.2 First-Order Process	143
3.3 First Order with Integrator	147
4. Derivative Controller Effect	148
4.1 Derivative Term on the Error	148
4.2 Derivative Term on the Process Variable	150
4.3 Filtering of the Process Variable	151
5. PID Controller for Second-Order Systems	152
6. PID Controller for Processes with Time Delay	157
7. Implementation Considerations and Performance Evaluation	160
7.1 Hardware and Software Platform	161
7.2 Bumpless Transfer and Anti-Reset Windup	162
7.3 Evaluating the Performance of Closed Loop Controllers	162
8. Conclusions	162
References	163
8. Model-Based Control	165
1. Introduction	165
2. Internal Model Control Principle	166
3. IMC-Based PID Type Controllers	167
3.1 First-Order Process	167
3.2 Second-Order Process	168
3.3 First-Order Process with Dead Time	169
3.4 IMC for High-Order Processes	170
4. Model Reference Adaptive Control	174
4.1 Load Disturbances in DC Motors	174
4.2 Adaptive Control of DC Motor	175
4.3 Model Reference Control Schemes	177
4.4 Combined MRC-IMC Motor Speed Control	178

5.	Introduction to State Space Control	179
5.1	Full State Feedback	180
5.2	Pole Placement in Discrete Time	181
5.3	State Space Observers	182
5.4	State Space Control Methods	184
6.	Conclusions	185
	References	185
9.	Multiple Loop Control Schemes	187
1.	Introduction	187
2.	Feedforward Control	188
3.	Cascade Control	192
4.	Ratio Control	196
4.1	Parallel Ratio Control	197
4.2	Series Ratio Control	198
4.3	Cross-Limit Ratio Control	199
5.	Two Degree of Freedom PID	202
5.1	Feedforward 2DOF PID Configuration	202
5.2	Feedback 2DOF PID Configuration	203
5.3	Method for Tuning 2DOF PID	203
6.	Case Study: Reheating Furnace	204
6.1	Reheat Process Description	204
6.2	Furnace Control Systems	204
7.	Conclusions	206
	References	207
10.	Digital Control Design	208
1.	Introduction	208
2.	General Design Method	209
3.	Design 1: Dead-Beat Controller	212
3.1	Dead-Beat Controller Nominal Performance	213
3.2	Dead-Beat Controller Sensitivity and Saturation	214
4.	Design 2: Kalman Controller	217
4.1	Kalman Controller Nominal Performance	218
4.2	Kalman Controller Sensitivity and Saturation	218
5.	Design 3: Dahlin Controller	220
5.1	Dahlin Controller Nominal Performance	222
5.2	Dahlin Controller Sensitivity and Saturation	222
6.	PID Controller in z-Domain	224
6.1	PI Controller	225
6.2	PD Controller	225
6.3	PID Controller	226
7.	Conclusions	227
	References	228

11. PLCs and Sequential Logic Control	230
1. Introduction	230
2. Combinational and Sequential Logic	231
2.1 Combinational Logic Control	231
2.2 Sequential Logic Control	232
2.3 Mixing and Heating Process Example	233
3. Programmable Logic Controllers	234
3.1 PLC Operation	234
3.2 PLC Programming Languages	236
4. Logic Design by Time Diagram	240
4.1 Pick-and-Place System Description	240
4.2 Pick-and-Place Control with Time Diagrams	241
5. Logic Design by Sequenced Latching	244
5.1 Sequential Latching Method	244
5.2 Pick-And-Place Control with Sequenced Latching	244
6. Discrete Event Systems Simulation	246
6.1 Actuators and Sensors Simulation with Timers	246
6.2 Actuators and Sensors Simulation with Integrators	247
7. Conclusions	248
References	249
12. Logic Control with State Machines	250
1. Introduction	250
2. Modeling Discrete Event Systems	251
2.1 Finite States Machines Description	251
2.2 Finite States Machines Representation	252
3. State Machines for Logic Control	253
3.1 Sequential Problem: Drilling Station	254
3.2 Sequential Problem: Pick-and-Place Station	256
4. Implementation of Finite State Machines	259
4.1 Finite State Machine Using Binary Variables	259
4.2 Finite State Machine Using Numeric Register	262
4.3 Finite State Machine as a GRAFCET or SFC Program	263
5. Concurrence with FSM	265
6. Conclusions	267
References	268
13. Multilevel Automation	270
1. Introduction	270
2. Supervisory Control	271
2.1 Automation Levels	271
2.2 SCADA Functions	272
3. Automation of a Manufacturing Cell	273
3.1 Automation of the Conveyor-Belt System	275
3.2 Control of the Robot System	276

3.3	Automation of AS/RS	278
3.4	Control of the Elevator of the AS/RS	280
3.5	Manufacturing Cell Integration	280
4.	Data Acquisition and Logging Functions	284
5.	Conclusions	286
	References	286
14. Hybrid Dynamical Control		288
1.	Introduction	288
2.	Hybrid Dynamical Systems	289
2.1	Modeling Hybrid Systems Behavior	290
2.2	Hybrid Automata	290
3.	Hybrid Dynamical Control	291
3.1	Finite State Model Predictive Control	292
3.2	Hybrid Control in Industrial Processes	293
3.3	Supervisory Control and Cyber Physical Systems	293
4.	FSM and PID Control of a DC Motor	294
4.1	Finite State Machine Based Position Control	294
4.2	FMS-PID Dynamical Response	295
5.	HDC of 4-Story Elevator	298
5.1	Elevators Sensors and Actuators	298
5.2	Description of Operation	299
5.3	Elevator Control with Hybrid Automata	300
5.4	Elevator Control Implementation	301
6.	Conclusions	302
	References	302
15. Cyber Physical Systems		304
1.	Introduction	304
2.	Industry 4.0 and Smart Manufacturing	305
2.1	Industry 4.0 Fundamental Technologies	305
2.2	From Industry 3.0 to Industry 4.0	306
3.	Cyber Physical Systems and Digital Twins	307
3.1	Cyber Physical Production Systems	308
3.2	Digital Twins	308
4.	Cyber Physical Systems Implementation	309
4.1	CPS for Advanced Automation and Control	309
4.2	Basic Approach to a CPS Design	310
5.	Case Study: CPS of a CNC Router	312
5.1	Virtual Twin Development	312
5.2	Virtual Twin Coordination with the Physical Router	316
5.3	Implementing Supervisory Control Functions	316
6.	Conclusions	317
	References	317
Index		319