

Contents

1	Introduction	1
1.1	Background of Vehicle–Track Coupled Dynamics	1
1.2	Academic Rationale of Vehicle–Track Coupled Dynamics	4
1.3	The Research Scope of Vehicle–Track Coupled Dynamics	7
1.4	Research Methodology of Vehicle–Track Coupled Dynamics	11
	References	14
2	Vehicle–Track Coupled Dynamics Models	17
2.1	On Modeling of Vehicle–Track Coupled System	17
2.1.1	Evolution of Wheel–Rail Dynamics Analysis Model	17
2.1.2	Modeling of Track Structure	21
2.1.3	Modeling of Vehicle	26
2.1.4	General Principles for Vehicle–Track Coupled System Modeling	28
2.2	Vehicle–Track Vertically Coupled Dynamics Model	29
2.2.1	Physical Model	30
2.2.2	Equations of Motion	37
2.3	Vehicle–Track Spatially Coupled Dynamics Model	56
2.3.1	Physical Model	56
2.3.2	Equations of Motion	72
2.3.3	Dynamic Wheel–Rail Coupling Model	122
2.4	Train–Track Spatially Coupled Dynamics Model	136
2.4.1	Basic Principle of Train–Track Dynamic Interaction	136
2.4.2	Train–Track Spatially Coupled Dynamics Model	137
	References	145

3	Excitation Models of Vehicle–Track Coupled System	151
3.1	Excitation Input Method	151
3.1.1	Fixed-Point Method	152
3.1.2	Moving-Vehicle Method	153
3.1.3	Tracking-Window Method	153
3.2	Impact Excitation Models	156
3.2.1	Impact Model of Wheel Flat	156
3.2.2	Model of Rail Dislocation Joint	161
3.2.3	Model of Dipped Rail Joint	163
3.2.4	Impact Model of Turnout	163
3.2.5	Other Impulsive Excitation Models	166
3.3	Harmonic Excitation Models	167
3.3.1	Displacement Input Model of Harmonic Excitation	168
3.3.2	Input Method of Common Track Irregularities	175
3.3.3	Input Function of Periodic Harmonic Force	177
3.4	Excitation Model of Track Dynamic Stiffness Irregularity	178
3.4.1	Stiffness Irregularity at Track Transition Sections	179
3.4.2	Track Stiffness Irregularity at Turnout Section	181
3.4.3	Modeling of Rail Infrastructure Defects	182
3.5	Excitation Model of Random Track Irregularity	183
3.5.1	Track Irregularity PSDs of United States of America	185
3.5.2	Track Irregularity PSDs of Germany	187
3.5.3	Track Irregularity PSDs of China	188
3.5.4	Comparison of Typical Track Irregularity PSDs	193
3.5.5	Numerical Simulation Method for Random Track Irregularity Time-Domain Samples Transformed from Track Irregularity PSDs	196
	References	201
4	Numerical Method and Computer Simulation for Analysis of Vehicle–Track Coupled Dynamics	203
4.1	Time Integration Methods for Solving Large-Scale Dynamic Problems	203
4.2	New Simple Fast Explicit Time Integration Method: Zhai Method	205
4.2.1	Integration Scheme of Zhai Method	205
4.2.2	Stability of Zhai Method	206
4.2.3	Accuracy of Zhai Method	208
4.2.4	Numerical Dissipation and Dispersion	208
4.2.5	Numerical Examples for Verification	211
4.3	Application of Zhai Method to Analysis of Vehicle–Track Coupled Dynamics	214

4.3.1	Numerical Integration Procedure	215
4.3.2	Determination of Time Step of Zhai Method	216
4.4	On Some Key Issues in Solving Process of Vehicle–Track Coupled Dynamics	218
4.4.1	Determination of Calculated Length of Track and Mode Number of Rail	218
4.4.2	Solving Technique for the Train–Track Coupled Dynamics	219
4.5	Computer Simulation of Vehicle–Track Coupled Dynamics	223
4.5.1	Vehicle–Track Vertically Coupled Dynamics Simulation	223
4.5.2	Vehicle–Track Spatially Coupled Dynamics Simulation	225
4.5.3	Train–Track Spatially Coupled Dynamics Simulation	225
	References	228
5	Field Test on Vehicle–Track Coupled System Dynamics	231
5.1	Field Test Methods of Vehicle–Track Coupled System Dynamics	231
5.1.1	Field Test Methods of Vehicle Dynamics	232
5.1.2	Field Test Methods of Track Dynamics	233
5.2	Typical Dynamics Tests of Vehicles Running on Tracks	237
5.2.1	Dynamic Test for a Typical High-Speed Train on Slab Track	237
5.2.2	Dynamic Test for a Typical Freight Vehicle on Ballasted Track	243
5.3	Typical Vehicle–Track Dynamic Interaction Tests	246
5.3.1	Wheel–Rail Interaction Test with a High-Speed Train on Qinshen Passenger Dedicated Line	246
5.3.2	Track Dynamics Test with a 10,000-Tonne Heavy-Haul Train on Daqin Line	251
5.3.3	Wheel–Rail Interaction Test on a Small-Radius Curve in Mountain Area Railway	253
	References	258
6	Experimental Validation of Vehicle–Track Coupled Dynamics Models	259
6.1	Experimental Validation on the Vehicle–Track Vertically Coupled Dynamics Model	259
6.1.1	Comparison of Vehicle Vibrations Between Theoretical and Measured Results	260
6.1.2	Comparison Between Theoretical and Measured Vibrations of Track Structure	261

6.1.3	Comparison Between Computed and Measured Wheel–Rail Dynamic Forces	264
6.1.4	Conclusions	266
6.2	Experimental Validation of the Vehicle–Track Spatially Coupled Dynamics Model	267
6.2.1	Experimental Validation by Field Test on Beijing–Qinhuangdao Speedup Line	267
6.2.2	Validation by High-Speed Train Running Test on Qinshen Passenger Dedicated Line	271
6.2.3	Validation by Derailment Experiment for Freight Train Running on Straight Line	273
6.2.4	Experimental Validation by Wheel–Rail Dynamic Interaction Test on a Small Radius Curve of Mountain Railway	275
6.2.5	Conclusions	276
6.3	Experimental Validation of the Train–Track Spatially Coupled Dynamics Model	276
6.3.1	Validation by Measured Coupler Longitudinal Forces of a Heavy-Haul Combined Train Under Braking Conditions	277
6.3.2	Validation by Tested Train Dynamic Characteristics Under Electric Braking Conditions	277
6.3.3	Validation by Measured Results of Heavy-Haul Train Curving Performance	281
6.3.4	Conclusions	283
	References	283
7	Computational Comparison of Vehicle–Track Coupled Dynamics and Vehicle System Dynamics	285
7.1	Comparison of Computational Results on Vehicle Hunting Stability	285
7.1.1	Numerical Calculation Method of Vehicle Nonlinear Hunting Stability	285
7.1.2	Comparison of Calculated Critical Speeds Between the Coupled Model and the Traditional Model	288
7.1.3	Summary	289
7.2	Comparison of Calculation Results on Vehicle Ride Comfort	290
7.3	Comparison of Calculation Results on Curving Performance	292
7.3.1	Comparison of Vehicle Passing Through a Small Radius Curved Track at Low Speed	292
7.3.2	Comparison of Vehicle Passing Through a Large Radius Curved Track at High Speed	295

7.4	Conclusions	296
	References	297
8	Vibration Characteristics of Vehicle–Track Coupled System	299
8.1	Steady-State Response of Vehicle–Track Interaction	299
8.1.1	Steady-State Response Due to Sleeper Span	300
8.1.2	Track Steady-State Response Under Moving Vehicle	301
8.1.3	Steady-State Curving Response	303
8.2	Dynamic Response of Vehicle–Track Interaction Due to Local Geometry Defects	305
8.2.1	Dynamic Response to Vertical Impulsive Defects	305
8.2.2	Dynamic Response to Lateral Impulsive Defects	313
8.2.3	Dynamic Response to Vertical Local Harmonic Geometry Defects	314
8.2.4	Dynamic Response to Lateral Local Harmonic Geometry Defects	318
8.3	Dynamic Response of Vehicle–Track Interaction to Cyclic Geometry Defects	321
8.4	Dynamic Response of Vehicle–Track Interaction Due to Failure of System Component	323
8.4.1	Dynamic Response to Disabled Lateral Dampers on a High-Speed Bogie	323
8.4.2	Dynamic Response to Fracture of Fastener Clips	324
8.4.3	Dynamic Response to Unsupported Sleepers	325
8.5	Dynamic Response of Vehicle–Track Interaction to Random Irregularities	327
8.5.1	Vibration Characteristics of the Car Body	330
8.5.2	Vibration Characteristics of the Bogie Frame	331
8.5.3	Vibration Characteristics of the Wheelset	331
8.5.4	Characteristics of the Wheel–Rail Forces	331
8.5.5	Vibration Characteristics of the Rail	332
8.5.6	Vibration Characteristics of the Track Slab	332
8.6	Dynamic Response Due to Railway Infrastructure Settlement	333
8.6.1	Dynamic Response Due to Differential Subgrade Settlement	333
8.6.2	Dynamic Response Due to Differential Ballast Settlement	341
	References	346

9 Principle and Method of Optimal Integrated Design for Dynamic Performances of Vehicle and Track Systems	347
9.1 Principle of Optimal Integrated Design for Dynamic Performances of Vehicle and Track Systems	347
9.2 Method of Optimal Integrated Design for Dynamic Performances of Vehicle and Track Systems	349
9.2.1 Dynamic Design Method for Vehicle System Based on the Optimal Integrated Design Principle	349
9.2.2 Dynamic Design Method for Track System Based on the Optimal Integrated Design Principle	350
9.3 Case Study I: Optimal Design of Suspension Parameters of a Heavy-Haul Locomotive	351
9.3.1 Operation Safety Analysis of HXD2C Prototype Locomotive Through Small Radius Curves	352
9.3.2 Optimization Scheme to Improve Curve Negotiation Performance of HXD2C Heavy-Haul Locomotive	353
9.3.3 Application of HXD2C Heavy-Haul Locomotive After Design Optimization	356
9.4 Case Study II: Design of a Steep Gradient Section of a High-Speed Railway	359
9.4.1 Engineering and Research Background	359
9.4.2 Comparison of High-Speed Running Performance Between Long Tunnel Scheme and Bridge–Tunnel Scheme for Shazai Island	361
9.4.3 Comparison of High-Speed Running Performance Between Long Tunnel Scheme and Bridge–Tunnel Scheme for Haiou Island	363
9.4.4 Comparison and Selection Between Shazai Island Scheme with Long Tunnel and Haiou Island with Long Tunnel	364
9.4.5 Project Implementation and Operation Practice	365
References	366
10 Practical Applications of the Theory of Vehicle–Track Coupled Dynamics in Engineering	367
10.1 Redesign of Dynamic Performance of a Speedup Locomotive	367
10.1.1 Engineering Background	367
10.1.2 Simulation on Abnormal Lateral Vibration of SS _{7E} Locomotive Prototype	368
10.1.3 Technical Proposal for Improving the Lateral Vibration Performance of SS _{7E} Locomotive	370
10.1.4 Practical Performance and Application Status of the Improved SS _{7E} Speedup Locomotive	373

10.2 Reducing Rail Side Wear on Heavy-Haul Railway Curves	375
10.2.1 The Problem of Rail Wear on Curves of Heavy-Haul Railways	375
10.2.2 Design Methodology of Rail Asymmetric-Grinding Profiles for Curves	378
10.2.3 Numerical Implementation for Design of Rail Asymmetric-Grinding Profiles on a Practical Railway Curves	381
10.2.4 Engineering Practice and Implementation Effect	385
10.3 Safety Control of the Coupler Swing Angle of a Heavy-Haul Long Train	389
10.3.1 Engineering Background	389
10.3.2 Analysis of Wheel–Rail Dynamic Interaction with Large Coupler Free Swing Angle	390
10.3.3 Effect of Coupler Free Swing Angle on Heavy-Haul Locomotive Running Safety and Its Safety Design	392
10.4 Application and Practice for Design of Fuzhou–Xiamen Shared High-Speed Passenger and Freight Railway	394
10.4.1 Engineering and Research Background	394
10.4.2 Effect of Key Parameters of Horizontal Curve on Dynamic Performance of High- and Low-Speed Trains	396
10.4.3 Optimal Integrated Design of Horizontal and Vertical Profiles for the Shared Passenger and Freight Railway	398
10.4.4 Dynamic Effects of High- and Low-Speed Trains on Track Structures	400
10.4.5 Technical Measures for Mitigating Dynamic Effects of Freight Train on Shared Passenger and Freight Railway Track	403
10.4.6 Project Implementation and Practical Operation Effect	405
References	406
Appendices	407