
Contents

<i>Preface</i>	xv
<i>About the editors</i>	xvii
<i>List of contributors</i>	xx
1 Autonomous vehicles	1
RASHMI KUMARI, SUBHRANIL DAS, ABHISHEK THAKUR, ANKIT KUMAR AND RAGHWENDRA KISHORE SINGH	
1.1 <i>Introduction</i>	1
1.2 <i>Importance of artificial intelligence (AI) in autonomous vehicles</i>	3
1.3 <i>AI-driven decision making</i>	6
1.4 <i>AI techniques and deep learning algorithms</i>	9
1.5 <i>Sensor fusion and data integration in autonomous vehicles</i>	12
1.6 <i>Perception system in autonomous vehicles</i>	15
1.7 <i>Human-AI interaction in autonomous vehicles</i>	16
1.8 <i>Safety and reliability in AI-driven autonomous vehicles</i>	17
1.9 <i>Conclusion</i>	20
References	20
2 Explainable artificial intelligence: fundamentals, approaches, challenges, XAI evaluation, and validation	25
MANOJ KUMAR MAHTO	
2.1 <i>Fundamentals of XAI</i>	25
2.2 <i>Introduction to explainable artificial intelligence</i>	26
2.3 <i>XAI and its significance</i>	26
2.4 <i>Key concepts in explainability</i>	27

2.4.1	<i>Model transparency</i>	28
2.4.2	<i>Interpretability vs. transparency</i>	28
2.4.3	<i>Trustworthiness</i>	28
2.5	<i>Approaches to developing XAI models</i>	29
2.6	<i>Model transparency</i>	30
2.6.1	<i>Transparent models in XAI</i>	30
2.6.2	<i>Limitations and use cases</i>	30
2.7	<i>Rule-based systems</i>	31
2.7.1	<i>Rule-based approaches to XAI</i>	31
2.7.2	<i>Scalability and complexity</i>	32
2.8	<i>Feature importance analysis</i>	32
2.8.1	<i>Shap and lime methods</i>	32
2.8.2	<i>Applications in various domains</i>	33
2.9	<i>Visualization techniques</i>	33
2.9.1	<i>Visualizing model decisions</i>	34
2.9.2	<i>Practical implementations</i>	34
2.10	<i>Challenges of implementing XAI in autonomous vehicles</i>	34
2.11	<i>Trade-Offs between performance and explainability</i>	35
2.11.1	<i>Balancing act: performance vs. interpretability</i>	36
2.11.2	<i>Strategies for achieving balance</i>	36
2.12	<i>Handling uncertainty</i>	37
2.12.1	<i>Uncertainty in autonomous vehicle context</i>	37
2.12.2	<i>Probabilistic models and uncertainty management</i>	38
2.13	<i>Safety and reliability</i>	38
2.13.1	<i>Safety considerations in XAI</i>	38
2.13.2	<i>Integration of safety mechanisms</i>	39
2.14	<i>Human-AI interaction</i>	39
2.14.1	<i>Designing user-friendly XAI interfaces</i>	40
2.14.2	<i>Ensuring positive user experience</i>	40
2.15	<i>XAI evaluation and validation</i>	40
2.16	<i>Metrics for evaluating explainability</i>	41
2.16.1	<i>Measuring fidelity, comprehensibility, and trustworthiness</i>	42
2.16.2	<i>Tailoring metrics to specific use cases</i>	42
2.17	<i>User studies</i>	43
2.17.1	<i>Conducting user-centric XAI evaluations</i>	43
2.17.2	<i>Methodologies and best practices</i>	43
2.18	<i>Simulation and testing</i>	44
2.18.1	<i>Simulated environments for XAI validation</i>	44
2.18.2	<i>Real-world testing scenarios</i>	45
2.19	<i>Regulatory compliance</i>	45

2.19.1	<i>Regulatory frameworks for XAI integration</i>	46
2.19.2	<i>Industry standards and guidelines</i>	46
2.20	<i>Conclusion</i>	46
	<i>References</i>	47
3	Explainable artificial intelligence in autonomous vehicles: prospects and future direction	50
	MANARELDEEN AHMED, ZEINAB E. AHMED, AND RASHID A. SAEED	
3.1	<i>Introduction</i>	50
3.2	<i>Current state of XAI in autonomous vehicles</i>	52
3.2.1	<i>Autonomous vehicles</i>	52
3.2.2	<i>Explainable artificial intelligence (XAI)</i>	53
3.2.3	<i>Case studies of XAI techniques in autonomous vehicles</i>	54
3.3	<i>Challenges and limitations of XAI in autonomous vehicles</i>	54
3.4	<i>Future trends in XAI for autonomous vehicles</i>	64
3.5	<i>Conclusion</i>	65
	<i>References</i>	66
4	XAI applications in autonomous vehicles	73
	LINA E. ALATABANI AND RASHID A. SAEED	
4.1	<i>Introduction</i>	73
4.2	<i>Background and review of related work</i>	74
4.2.1	<i>XAI method for convolutional neural networks in self-driving cars</i>	74
4.2.2	<i>The internet of vehicles structure and need for XAI-IDS</i>	76
4.2.3	<i>XAI frameworks</i>	76
4.2.4	<i>Practical implementation of XAI-based models</i>	76
4.3	<i>Internet of vehicles (IoV) network architecture</i>	77
4.3.1	<i>Autonomous vehicle components and design</i>	79
4.3.2	<i>Applications and services</i>	84
4.3.3	<i>Current issues</i>	85
4.4	<i>XAI methods and algorithms</i>	86
4.4.1	<i>XAI methods can be sub-divided into four categories</i>	86
4.4.2	<i>XAI algorithms in autonomous vehicles</i>	88
4.5	<i>XAI models to improve overall system performance</i>	92
4.6	<i>Discussion</i>	94
4.7	<i>Conclusion</i>	95
	<i>References</i>	95

5 Emerging applications and future scope of internet of vehicles for smart cities: a survey	100
JYOTI SHARMA, MANISH BHARDWAJ, AND NEELAM CHANTOLA	
5.1 <i>Introduction</i>	100
5.2 <i>Layered architecture of IoV</i>	106
5.3 <i>Literature survey</i>	107
5.3.1 <i>Applications of IoV in smart cities</i>	108
5.4 <i>Issues and challenges of IoV</i>	110
5.5 <i>Future scope of IoV</i>	111
5.6 <i>Conclusion</i>	112
References	112
6 Future issues and challenges of internet of vehicles: a survey	116
MANISH BHARDWAJ, SUMIT KUMAR SHARMA, NITIN KUMAR, AND SHWETA ROY	
6.1 <i>Introduction</i>	116
6.2 <i>Literature survey</i>	119
6.3 <i>IoV ecosystem</i>	121
6.4 <i>Internet of vehicles applications</i>	124
6.5 <i>Summarized challenges and future research directions</i>	126
6.6 <i>Conclusion</i>	130
References	130
7 Feature designing and security considerations in electrical vehicles utilizing explainable AI	134
MANDEEP KAUR AND VINAYAK GOEL	
7.1 <i>Feature designing for smart electrical vehicles</i>	134
7.2 <i>Explainable recommendations and decision support</i>	137
7.2.1 <i>Building trust through explainable recommendations</i>	140
7.3 <i>Addressing user concerns and misconceptions</i>	140
7.3.1 <i>User education and training</i>	140
7.3.2 <i>Continuous improvement and feedback</i>	141
7.3.3 <i>User feedback and iterative design</i>	141
7.3.4 <i>Importance of user feedback</i>	141
7.3.5 <i>Gathering user feedback</i>	142
7.3.6 <i>Surveys and questionnaires</i>	142
7.3.7 <i>User interviews and focus groups</i>	142
7.3.8 <i>User testing and observations</i>	142

- 7.4 *Online communities and social media* 143
 - 7.4.1 *Incorporating explainable AI in user feedback* 144
 - 7.4.2 *Safety considerations in smart cars* 144
 - 7.4.3 *Importance of safety in smart cars* 144
 - 7.4.4 *Safety challenges in smart cars* 144
 - 7.4.5 *Explainable AI for safety in smart cars* 145
 - 7.4.6 *Decision explanation* 145
 - 7.4.7 *Error detection and diagnosis* 145
 - 7.4.8 *Safety validation and certification* 145
 - 7.4.9 *Privacy and data protection* 145
 - 7.4.10 *Collaborative safety* 146
 - 7.4.11 *Human-machine interaction for safety* 146
 - 7.4.12 *Security challenges in smart cars* 146
 - 7.4.13 *Cybersecurity risks* 147
 - 7.4.14 *Data privacy and protection* 147
 - 7.4.15 *Malicious attacks on AI systems* 147
 - 7.4.16 *Supply chain security* 148
 - 7.4.17 *Over-the-air updates* 148
 - 7.4.18 *XAI for security enhancement* 148
 - 7.4.19 *Explainable AI for safety and security* 149
 - 7.4.20 *Enhancing safety with explainable AI* 149
 - 7.4.21 *Real-time risk assessment* 149
 - 7.4.22 *Error detection and diagnosis* 149
 - 7.4.23 *Safety-critical decision support* 149
 - 7.4.24 *Strengthening security with explainable AI* 150
 - 7.4.25 *Intrusion detection and prevention* 150
 - 7.4.26 *Vulnerability assessment* 150
 - 7.4.27 *Adversarial attack detection* 150
 - 7.4.28 *Regulatory compliance and accountability* 150
 - 7.4.29 *Compliance with safety standards* 151
 - 7.4.30 *Ethical decision-making* 151
 - 7.4.31 *Accountability and liability* 151
 - 7.4.32 *Importance of privacy and data protection in smart cars* 152
 - 7.4.33 *Privacy challenges in smart cars* 152
 - 7.4.34 *Role of explainable AI in privacy and data protection* 153
 - 7.4.35 *Challenges in implementing XAI for privacy and data protection* 154
- References 155

8 Feature detection and feature visualization in smart cars utilizing explainable AI	158
MANDEEP KAUR AND VINAYAK GOEL	
8.1 Introduction	158
8.1.1 <i>Feature visualization</i>	158
8.1.2 <i>Benefits of feature importance and feature visualization</i>	159
8.1.3 <i>Challenges and limitations</i>	160
8.1.4 <i>Local explanations and counterfactuals</i>	161
8.1.5 <i>Local explanations</i>	161
8.1.6 <i>Counterfactuals</i>	161
8.1.7 <i>Benefits and applications</i>	162
8.1.8 <i>Model-agnostic explanations</i>	163
8.1.9 <i>Understanding model-agnostic explanations</i>	163
8.1.10 <i>Techniques for model-agnostic explanations</i>	163
8.1.11 <i>Global explanations</i>	164
8.1.12 <i>Local explanations</i>	164
8.1.13 <i>Application of model-agnostic explanations in smart cars</i>	164
8.1.14 <i>Safety and decision-making</i>	165
8.1.15 <i>Regulatory compliance and accountability</i>	165
8.1.16 <i>User experience and trust</i>	165
8.1.17 <i>Rule extraction and rule sets</i>	166
8.1.18 <i>Rule extraction techniques</i>	166
8.1.19 <i>Rule sets for decision-making</i>	166
8.1.20 <i>Benefits and limitations of rule extraction and rule sets</i>	167
<i>References</i>	168